\(x-4y=5\Rightarrow x=4y+5\)
\(A=\left(4y+5\right)^2+4y^2=20y^2+40y+25\)
\(A=20\left(y+1\right)^2+5\ge5\)
\(A_{min}=5\) khi \(\left(x;y\right)=\left(1;-1\right)\)
\(x-4y=5\Rightarrow x=4y+5\)
\(A=\left(4y+5\right)^2+4y^2=20y^2+40y+25\)
\(A=20\left(y+1\right)^2+5\ge5\)
\(A_{min}=5\) khi \(\left(x;y\right)=\left(1;-1\right)\)
Cho 2 số thực x, y thỏa mãn: x^2.+4y^2=20. Tìm GTLN của biểu thức: A=|x+y|
Cho 2 số thực x, y thỏa mãn: \(x^2+4y^2=20\). Tìm GTLN của biểu thức: A=\(\left|x+y\right|\)
Cho x và y là hai số dương thỏa mãn: x+y=2. Tìm GTNN của biểu thức: Q=\(\dfrac{2}{x^2+y^2}+\dfrac{3}{xy}\)
Tìm các cặp số nguyên x, y thỏa mãn: \(x^2+8y^2+4xy-2x-4y=4\)
cho x,y,z>0 thỏa mãn \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=6\) và biểu thức \(P=x+y^2+z^3\).
a/. CM: \(P\ge x+2y+3z-3\)
b/. tìm GTNN của P
cho x,y,z là các số dương thỏa mãn: x + y + z = 1
Tìm GTNN của biểu thức P = \(\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)
Bài 1. Tìm x, y thỏa mãn: x2 - y2 - 2x - 4y + 5 = 0
Bài 2. Cho a, b, c thỏa mãn a( a - b ) + b( b - c ) + c( c - a ) = 0
Tìm GTNN của P = a3 + b3 + c3 - 3abc + 3ab - 3c + 5
Bài 3. Tìm x, y, z thỏa mãn: x2 + 4y2 + z2 = 2x + 12y - 4z - 14
Bài 4. Cho x2 + x - 3 = 0. Tính P = \(x^2+\frac{9}{x^2}\)
Bài 5. Cho x2 + y2 + z2 = xy + yz + zx và x + y + z = -3
Tính A = x2017 + y2018 + z2019
Bài 6. Cho x, y, z thỏa mãn: x + y + z = x2 + y2 + z2 = x3 + y3 + z3 = 1
Tính P = ( x - 1 )18 + ( y - 1 )9 + ( z - 1 )1997
Bài 7. Cho a, b thỏa mãn 4a2 + 2b2 + 4ab - 4a - 6b + 1 = 0
Tìm GTNN của P = 2a + b
Bài 8. Tìm GTNN của:
a) P = x2 + 3y2 - 2xy + 2x - 4y + 5
b) Q = x4 - x2 + 2x + 1999
Bài 9. Tìm GTLN của x thỏa mãn: x2 + 4y2 - 4y = 15
Bài 1: Tìm GTNN của biểu thức sau:
a) A= 2x2 + x
b) B = x2 + 2x + y2- 4y + 6
c) C = 4x2 + 4x + 9y2 - 6y - 5
d) D = (2 + x)( x + 4) - ( x - 1)( x + 3 )2
a, Tìm GTNN của biểu thức:
A=x2+2y2+2xy+2x-4y+2017
b, Cho x,y>0 Cmr \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+3\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)