Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
VUX NA

Cho hai số thực dương a,b thỏa mãn 2a + 3b = 4. Tìm giá trị nhỏ nhất của biểu thức Q = \(\dfrac{2002}{a}+\dfrac{2017}{b}+2996a-5501b\)

Lấp La Lấp Lánh
21 tháng 8 2021 lúc 19:54

\(Q=\dfrac{2002}{a}+\dfrac{2017}{b}+2996a-5501b=\left(\dfrac{2002}{a}+8008a\right)+\left(\dfrac{2017}{b}+2017b\right)-\left(5012a+7518b\right)\)

\(=\left(\dfrac{2002}{a}+8008a\right)+\left(\dfrac{2017}{b}+2017b\right)-2506\left(2a+3b\right)\)

Áp dụng bất đẳng thức Cosi cho 2 số dương:

\(\left\{{}\begin{matrix}\dfrac{2002}{a}+8008\ge2\sqrt{\dfrac{2002}{a}.8008}=8008\\\dfrac{2017}{b}+2017b\ge2\sqrt{\dfrac{2017}{b}.2017b}=4034\end{matrix}\right.\)

Ta có: \(2a+3b=4\Rightarrow-\left(2a+3b\right)=-4\Leftrightarrow-2506\left(2a+3b\right)=-10024\)

\(\Rightarrow Q\ge8008+4034-10024=2018\)

\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\)

 


Các câu hỏi tương tự
VUX NA
Xem chi tiết
VUX NA
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
VUX NA
Xem chi tiết
VUX NA
Xem chi tiết
linh phạm
Xem chi tiết
VUX NA
Xem chi tiết
VUX NA
Xem chi tiết
VUX NA
Xem chi tiết