\(OO'=R+R'=8\) nên hai đường tròn tiếp xúc ngoài với nhau
\(OO'=R+R'=8\) nên hai đường tròn tiếp xúc ngoài với nhau
M.Bài 6.Cho hai đường tròn (O; R) và (O; R) tiếp xúc ngoài nhau tại M. Hai đường tròn (O) và (O) cùng tiếp xúc trong với đường tròn lớn (O; R) lần lượt tại E và F. Tính bán kính Rbiết chu vi tam giác OOOlà 20cm.
Bài 7.Cho đường tròn (O; 9cm). Vẽ 6 đường tròn bằng nhau bán kính R đều tiếp xúc trong với (O) và mỗi đường tròn đều tiếp xúc với hai đường khác bên cạnh nó. Tính bán kính R.
Bài 8.Cho hai đường tròn đồng tâm. Trong đường tròn lớn vẽ hai dây bằng nhau AB = CD và cùng tiếp xúc với đường tròn nhỏ tại M và N sao cho AB CD tại I. Tính bán kính đường tròn nhỏ biết IA = 3cm, IB = 9cm.
Bài 9.Cho ba đường tròn O O O1 2 3( ),( ),( )cùng có bán kính R và tiếp xúc ngoài nhau từng đôi một. Tính diện tích tam giác có ba đỉnh là ba tiếp điểm.
Bài 10.Cho hai đường tròn (O) và (O) tiếp xúc nhau tại A. Qua A vẽ một cát tuyến cắt đường tròn (O) tại B và cắt đường tròn (O) tại C. Từ B vẽ tiếp tuyến xyvới đường tròn (O). Từ C vẽ đường thẳng uv song song với xy. Chứng minh rằng uvlà tiếp tuyến của đường tròn (O).
Bài 11.Cho hình vuông ABCD. Vẽ đường tròn (D; DC) và đường tròn (O) đường kính BC, chúng cắt nhau tại một điểm thứ hai là E. Tia CE cắt AB tại M, tia BE cắt AD tại N. Chứng minh rằng:a) N là trung điểm của AD.b) M là trung điểm của AB.
Bài 12.Cho góc vuông xOy. Lấy các điểm I và K lần lượt trên các tia Oxvà Oy. Vẽ đường tròn (I; OK) cắt tia Oxtại M (I nằm giữa O và M). Vẽ đường tròn (K; OI) cắt tia Oytại N (K nằm giữa O và N).
a) Chứng minh hai đường tròn (I) và (K) luôn cắt nhau.
b) Tiếp tuyến tại M của đường tròn (I) và tiếp tuyến tại N của đường tròn (K) cắt nhau tại C. Chứng minh tứ giác OMCN là hình vuông.
c) Gọi giao điểm của hai đường tròn (I), (K) là A và B. Chứng minh ba điểm A, B, C thẳng hàng.d) Giả sử I và K theo thứ tự di động trên các tia Oxvà Oysao cho OI + OK = a(không đổi). Chứng minh rằng đường thẳng AB luôn đi qua một điểm cố định.
Cho hai đường tròn (O; R) và (O; R) tiếp xúc ngoài nhau tại M. Hai đường tròn (O) và (O) cùng tiếp xúc trong với đường tròn lớn (O; R) lần lượt tại E và F. Tính bán kính Rbiết chu vi tam giác OOOlà 20cm
Ai giúp minh với
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Dây AC của đường tròn (O) tiếp xúc với đường tròn (O') tại A. Dây AD của đường tròn (O') tiếp xúc với đường tròn (O) tại A. Gọi K là điểm đối xứng với A qua trung điểm I của OO', E là điểm đối xứng với A qua B. Chứng minh rằng :
a) \(AB\perp KB\)
b) Bốn điểm A, C, E, D nằm trên cùng một đường tròn
Cho hai đường tròn (O;20cm) và (O';15cm) cắt nhau tại A và B. Tính đoạn nối tâm OO'; biết rằng AB = 24cm (Xét hai trường hợp : O và O' nằm khác phía đối với AB; O và O' nằm cùng phía đối với AB)
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Gọi I là trung điểm của OO'. Qua A vẽ đường thẳng vuông góc với IA, cắt các đường tròn )O) và (O') tại C vad D (khác A). Chứng minh rằng AC = AD ?
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Gọi M là trung điểm của OO'. Đường thẳng qua A cắt các đường tròn (O) và (O’) lần lượt ở C và D.
a, Khi CD ⊥ MA, chứng minh AC = AD.
b, Khi CD đi qua A và không vuông góc với MA.
i, Vẽ đường kính AE của (O), AE cắt (O’) ở H. Vẽ đường kính AF của (O'), AF cắt (O) ở G. Chứng minh AB, EG, FH đồng quy.
ii, Tìm vị trí của CD để đoạn CD có độ dài lớn nhất?
Bài hơi dài nên mn cố gắng giúp mk vs ạ
Cho hai đường tròn (O; 9cm) và (O' 4cm) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC, B ∈ (O), C ∈ (O’). Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC ở I.Tính BC
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Một đường thẳng vuông góc với AB tại B cắt các đường tròn (O) và (O') theo thứ tự tại C và D (khác B).
Chứng minh rằng : \(OO'=\dfrac{1}{2}CD\)
Cho hai đường tròn (O,R) và (O',R') (R>R') tiếp xúc ngoài tại A. Qua A kẻ đường thẳng m cắt (O) tại C, và d2 là tiếp tuyến của (O') tại D.
a. Chứng mính d1//d2
b. Trên cùng một nửa mặt phẳng bờ OO' không chứa C, vẽ hai bán kính OE và OF sao cho OE//OF(F khác D). Tính góc EAF
c. Đường thẳng OO' cắt đường thẳng EF tại H. Tính OH theo R và R'
d. Vẽ đường kính FI của (O'). Chứng minh CE//ID