Bài 6: Cộng, trừ đa thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho hai đa thức :

\(M=3xyz-3x^2+5xy-1\)

\(N=5x^2+xyz-5xy+3-y\)

Tính :

\(M+N;M-N;N-M\)

Quang Duy
19 tháng 4 2017 lúc 11:33

Ta có:

M = 3xyz - 3x2 + 5xy - 1

N = 5x2 + xyz - 5xy + 3 - y

M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y

= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3

= 2x2 + 4xyz - y +2.

M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)

= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y

= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3

= -8x2 + 2xyz + 10xy + y - 4.

N - M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)

= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1

= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy - y + 3 + 1

= 8x2 - 2xyz - 10xy - y + 4.



Vu Kim Ngan
19 tháng 3 2018 lúc 21:23

M = 3xyz - 3x2 + 5xy - 1

N = 5x2 + xyz - 5xy + 3 - y

M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y

= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3

= 2x2 + 4xyz - y +2.

M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)

= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y

= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3

= -8x2 + 2xyz + 10xy + y - 4.

N - M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)

= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1

= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy - y + 3 + 1

= 8x2 - 2xyz - 10xy - y + 4.

Vũ Thùy Linh
19 tháng 3 2018 lúc 22:07

M = 3xyz - 3x2 + 5xy - 1

N = 5x2 + xyz - 5xy + 3 - y

M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y

= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3

= 2x2 + 4xyz - y +2.

M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)

= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y

= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3

= -8x2 + 2xyz + 10xy + y - 4.

N - M = (5x 2+ xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)

= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1

= ( 5x2 + 3x2 ) + xyz - 3xyz - 5xy - 5xy - y + 3 + 1

= 8x2 - 2xyz - 10xy - y + 4.


Các câu hỏi tương tự
Anh Triêt
Xem chi tiết
Quynh Hoa Duong
Xem chi tiết
Võ Duy Danh Phan
Xem chi tiết
Duki Ta
Xem chi tiết
Trần Phan Ngọc Lâm
Xem chi tiết
Táo Lê
Xem chi tiết
Đỗ Hoàng Hải
Xem chi tiết
ℍ𝕠̣𝕔 𝔻𝕠̂́𝕥
Xem chi tiết
Nakamoto Yuta
Xem chi tiết