Tính giá trị biểu thức :
1. \(A=\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{9}-\dfrac{2}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{9}-\dfrac{4}{11}}\)
2. \(B=\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\)
3. \(C=\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot\dfrac{5^2}{4\cdot6}\cdot\dfrac{5^2}{4\cdot6}\)
4. \(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right)\cdot\left(\dfrac{2}{3}\cdot\dfrac{1}{4}\right)^2\)
5. Cho \(M=8\dfrac{2}{7}-\left(3\dfrac{4}{9}+4\dfrac{2}{7}\right)\) ; \(N=\left(10\dfrac{2}{9}+2\dfrac{3}{5}\right)-6\dfrac{2}{9}\). Tính \(P=M-N\)
6. \(E=10101\left(\dfrac{5}{111111}+\dfrac{5}{222222}-\dfrac{4}{3\cdot7\cdot11\cdot13\cdot37}\right)\)
7. \(F=\dfrac{\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{256}+\dfrac{3}{64}}{1-\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
8. \(G=\text{[}\dfrac{\left(6-4\dfrac{1}{2}\right):0,03}{\left(3\dfrac{1}{20}-2,65\right)\cdot4+\dfrac{2}{5}}-\dfrac{\left(0,3-\dfrac{3}{20}\right)\cdot1\dfrac{1}{2}}{\left(1,88+2\dfrac{3}{25}\right)\cdot\dfrac{1}{80}}\text{]}:\dfrac{49}{60}\)
9. \(H=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{4\cdot5\cdot6}+...+\dfrac{1}{98\cdot99\cdot100}\)
10. \(I=\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\dfrac{24}{25}\cdot...\cdot\dfrac{2499}{2500}\)
11. \(K=\left(-1\dfrac{1}{2}\right)\left(-1\dfrac{1}{3}\right)\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{999}\right)\)
12. \(L=1\dfrac{1}{3}+1\dfrac{1}{8}+1\dfrac{1}{15}...\) (98 thừa số)
13. \(M=-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{3}}}}\)
14. \(N=\dfrac{155-\dfrac{10}{7}-\dfrac{5}{11}+\dfrac{5}{23}}{403-\dfrac{26}{7}-\dfrac{13}{11}+\dfrac{13}{23}}\)
15. \(P=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{5}-1\right)...\left(\dfrac{1}{2001}-1\right)\)
16. \(Q=\left(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{2005\cdot2006}\right):\left(\dfrac{1}{1004\cdot2006}+\dfrac{1}{1005\cdot2005}+...+\dfrac{1}{2006\cdot1004}\right)\)
Bài 2: Thực hiện phép tính một cách hợp lí
f) \(\dfrac{7}{19}\) . \(\dfrac{8}{11}\) + \(\dfrac{3}{11}\) . \(\dfrac{7}{19}\) +\(\dfrac{-12}{19}\)
i) ( \(\dfrac{3}{8}\) + \(\dfrac{-3}{4}\)+ \(\dfrac{7}{12}\) ) : \(\dfrac{5}{6}\) +\(\dfrac{1}{2}\)
Chứng minh \(\dfrac{1}{5}\)< \(\dfrac{1}{4^2}\)+\(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)+\(\dfrac{1}{7^2}\)+......+\(\dfrac{1}{99^2}\)+\(\dfrac{1}{100^2}\)<\(\dfrac{1}{3}\)
1) \(\dfrac{5}{13}\) +\(\dfrac{-5}{17}\) + \(\dfrac{-20}{41}\) + \(\dfrac{8}{13}\) +\(\dfrac{-21}{41}\)
2) \(\dfrac{1}{5}\) + \(\dfrac{-2}{9}\) + \(\dfrac{-7}{9}\) + \(\dfrac{4}{5}\) +\(\dfrac{16}{17}\)
3) \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\) +\(\dfrac{2}{7.9}\) +....................+ \(\dfrac{2}{99.101}\)
j) \(\dfrac{-3}{4}\) + \(\dfrac{2}{7}\) + \(\dfrac{-1}{4}\) +\(\dfrac{3}{5}\) +\(\dfrac{5}{7}\)
k) \(\dfrac{-2}{17}\)+ \(\dfrac{15}{23}\) + \(\dfrac{-15}{17}\) + \(\dfrac{4}{19}\) +\(\dfrac{8}{23}\)
Bài 15:
a)\(\dfrac{-2}{5}\)+\(\dfrac{4}{5}\) . x =\(\dfrac{3}{5}\)
b)\(\dfrac{-3}{7}\) - \(\dfrac{4}{7}\):x = -2
Bài 16
a) x - \(\dfrac{10}{3}\) = \(\dfrac{7}{15}\) . \(\dfrac{3}{5}\)
b) x + \(\dfrac{3}{22}\)= \(\dfrac{27}{121}\) . \(\dfrac{11}{9}\)
c) \(\dfrac{8}{23}\) . \(\dfrac{48}{24}\) - x = \(\dfrac{1}{3}\)
d) 1 - x = \(\dfrac{49}{65}\).\(\dfrac{5}{7}\)
Bài 17: tìm x
a) \(\dfrac{62}{7}\) . x = \(\dfrac{29}{9}\): \(\dfrac{3}{56}\)
b) \(\dfrac{1}{5}\) : x=\(\dfrac{1}{5}\)+\(\dfrac{1}{7}\)
bài 18:
a)\(\dfrac{2}{5}\)+\(\dfrac{3}{4}\): x =\(\dfrac{-1}{2}\)
b)\(\dfrac{5}{7}\) - \(\dfrac{2}{3}\) . x = \(\dfrac{4}{5}\)
c) \(\dfrac{1}{2}\)x + \(\dfrac{3}{5}\)x = \(\dfrac{-2}{3}\)
d) \(\dfrac{4}{7}\).x-x = \(\dfrac{-9}{14}\)
bài 19: tính
\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+...+ \(\dfrac{1}{2018.2019}\)
bài 20:tìm x
\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{x.\left(x+1\right)}\)=\(\dfrac{2008}{2009}\)
bài 21: tìm x
\(\dfrac{x+1}{99}\)+\(\dfrac{x+2}{98}\)\(\dfrac{x+3}{97}\)\(\dfrac{x+4}{96}\)=-4
bài 22 : so sánh các phân số sau:
a) \(\dfrac{-1}{5}\)+\(\dfrac{4}{-5}\)và 1
b) \(\dfrac{3}{5}\) và \(\dfrac{2}{3}\)+\(\dfrac{-1}{5}\)
c)\(\dfrac{3}{2}\)+\(\dfrac{-4}{3}\) và \(\dfrac{1}{10}\)+\(\dfrac{-4}{5}\)
d) \(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{5}\)+\(\dfrac{1}{6}\) và 2
Cho \(A=\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}.\dfrac{7}{8}...\dfrac{79}{80}\) . Chứng minh \(A< \dfrac{1}{9}\)
Chứng minh rằng :
\(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}=2\)
\(a.19\dfrac{5}{8}:\dfrac{7}{12}-15\dfrac{1}{4}:\dfrac{7}{12} b.\dfrac{2}{5}.\dfrac{1}{3}-\dfrac{2}{15}:\dfrac{1}{5}+\dfrac{3}{5}.\dfrac{1}{3}\)
c.\(\left(3\dfrac{1}{3}+2,5\right):\left(3\dfrac{1}{6}-\left(4\dfrac{1}{5}\right)\right)-\dfrac{11}{31}\)
1.Tính giái trị biểu thức