Ta có : góc xOz= góc xOy+ góc yOz=70o+110o=180o
Mà góc xOy và góc yOz là 2 góc kề nhau nên: góc xOz là góc bẹt
=>Ox và Oz là 2 tia đối
Ta có : góc xOz= góc xOy+ góc yOz=70o+110o=180o
Mà góc xOy và góc yOz là 2 góc kề nhau nên: góc xOz là góc bẹt
=>Ox và Oz là 2 tia đối
Cho hình thoi tâm có cạnh bằng 2a và góc ABC=120 độ . Gọi G là trọng tâm tam giác , tính độ dài của vectơ BG + AD
BÀI 1 cho tam giác ABC vuông tại A, biết AB=a và góc B=60 độ. tính độ dài của các vecto AB+AC và AB-AC
BÀI 2 cho hình vuông ABCD cạnh a . tính độ dài của các vecto
a) AC-AB
b) AB+AD
c) AB+BC
cho hai vecto vt a và vt b có giá tạo với nhau một góc 60° , biết |vt a| = | vt b| = 4 . Tính | vt a - vt b |
Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng
Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng
Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn vectoAB=k. vectoAC và vectoMN=k. vectoMP (k khác 1). Giả sử X, Y, Z là các điểm chia các đoạn thẳng AM, BN và CP theo cùng 1 tỉ số. CMR: X, Y, Z thẳng hàng
Bài 4: Cho góc xOy và 2 điểm M, N di chuyển trên 2 cạnh Ox, Oy thỏa mãn OM=2ON.
a)) CMR: trung điểm I của MN luôn thuộc 1 đường thẳng cố định
b)) Nghiên cứu trường hợp giả thiết thay OM=2ON thành OM=mON với m là 1 hằng số cố định
c)) Nghiên cứu trường hợp thay giả thiết I là trung điểm MN thành giả thiết I là điểm chia MN theo tỉ số k cố định. (toán lớp 10 ạ)
tìm tất cả các tam giác ABC có độ dài các cạnh là các số nguyên dương thỏa mãn độ dài cạnh AC bằng độ dài đường phân giác trong góc A
cho hình thoi ABCD cạnh bằng a , tâm O , góc BAD = 60 : a) chứng minh rằng : vector AB + 2 vector AO + vector AD = 2 vector AC . Tính giá trị tuyệt đối của ( vector AB + 2 vector AO + vector AD ) theo a ; b) gọi G là trọng tâm tam giác ACD . Chứng minh rằng : vector BA + vector BC + vector BD = 2 vector BG
cho tam giác abc có ab=a, ac=3a/4, góc bac=60, gọi h là hình chiếu của a lên bc, tính độ dài vector ah theo a
Cho tam giác ABC vuông tại A có AB=3 góc B=60° .Gọi M là điểm thỏa vecto MA + vecto MB= vecto 0. Tính độ dài vecto BM + vecto BC + vecto BA
Cho tam giác vuông ABC (∠A = 900) có cạnh BC = 2AB, tia phân giác của ∠ABC cắt AC tại D, gọi E là trung điểm của cạnh BC.
1) Chứng minh DE vuông góc với BC.
2) Chứng minh rằng BD = DC.
3) Tính ∠B, ∠C của tam giác ABC.