cho đường tròn (O,R) và điểm A sao cho OA = 2R. Từ A , vẽ AB tiếp xúc với (O) với B là tiếp điểm. Kẻ đường kính BC của (O). Gọi M là trung điểm của đoạn thẳng OB, kẻ MN vuông góc với AC tại N.
a) chứng minh tứ giác ABMN nội tiếp.
b) kẻ BH vuông góc với OA tại H. Cho R= 3cm. Tính số đo góc BOA và độ dài đoạn BH
c) đường thẳng vuông góc với OA tại O cắt tia AB tại E. Chứng minh ba điểm E,M,N, thẳng hàng
cho đường tròn (o;R) và một điểm A sao cho Oa=2R vẽ tiếp tuyến AB với đường tròn tâm o (b là tiếp tuyến ) vẽ dây Bc của đường tròn tâm o vuông góc với OA tại H
a) tính Ab theo R và chứng minh Ac là tiếp tuyến của đường tròn tâm O
b) c/m tam giác abc là tam giác đều
c) trên tia đối của tia BC lấy điểm Q. từ Q vẽ 2 tiếp tuyến QD vad QE của đường tròn tâm O ( D và E là 2 tiếp tuyến ). C/M 2 điểm A,E,D thẳng hàng
Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn. Kẻ 2tiếp tuyến AB, AC với đường tròn (B,C là 2 tiếp điểm). Qua C kẻ một đường thăng songsong với OB, cắt OA tại H. Chứng minh rằng tứ giác ABOC nội tiếp
H là trực tâm của tam giác ABC.
vẽ cả hình
Cho (O;R).A nằm ngoài đường tròn sao cho OA=2R.Kẻ tiếp tuyến AB và AC với (O) (B,C là tiếp điểm) Đoạn thẳng OA cắt (O) tại I đường thẳng qua O và vuông góc với OB cắt AC tại K a) chứng minh tam giác OAK cân tại A b)CB vuông góc với OA c) Đường thẳng KI cắt AB tại M. Chứng minh KM là tiếp tuyến của (O)
Cho góc xAy = 60 độ, đường tròn (O) tiếp xúc với tia Ax tại B, tiếp xúc với tia Ay tại C. Trên cung nhỏ BC của đường tròn (O) lấy điểm M, gọi D, E, F lần lượt là hình chiếu của điểm M trên BC, CA, AB. a. Chứng minh CDME là tứ giác nội tiếp b. Tính số đo góc EDF c. Chứng minh rằng MD^2= ME*MF
Cho hai đường tròn (O) và (O') tiếp xúc ngoài ở A . Tiếp tuyến chung ngoài của hai đường tròn , tiếp xúc với đường tròn (O) ở M , tiếp xúc với đường tròn (O') ở N . Qua A kẻ đường vuông góc với OO' cắt MN ở I
a) Chứng minh tam giác AMN , IOO' là tam giác vuông
b) Chứng minh rằng MN là tiếp tuyến của đường tròn đường kính OO'
c) Cho biết OA=8cm , O'A =4,5cm . Tính độ dài MN
Cho đường tròn (O; 3 cm) và A là một điếm cố định thuộc đường tròn. Đường thẳng d tiếp xúc với đường tròn tại A.Trên d lấy điểm M (với M khác A). Kẻ dây cung AB vuông góc với OM tại H
a, Tính độ dài OM và AB khi OH=2 cm
b, Chứng minh tam giác MBA cân và MB là tiếp tuyến của (O)
c, Tim vị trí của điểm M trên d sao cho diện tích tam giác HOA lớn nhất.
(giúp mình câu c với ạ :< )
Cho (O;R) và điểm A sao cho OA = 2R . Vẽ các tiếp điểm AB , AC với đường tròn (O) (B,C là các tiếp điểm)
a. Chứng minh ∆ABC đều
b. Đường vuông góc với OB tại O cắt AC tại S. Chứng minh ∆SOA cân
c. Gọi I là trung điểm của OA
Chứng minh SI là tiếp tuyến của đường tròn tâm O. Tính độ dài SI theo R
Cho tam giác ABC vuông tại A( AB < AC) nội tiếp đường tròn (O) có đường kính BC. Kẻ dây AD vuông góc với BC. Gọi E là giao điểm của DB và CA. Qua E kẻ đường thẳng vuông góc với BC, cắt BC ở H, cắt AB ở F. Chứng minh rằng :
a) Tam giác EBF là tam giác cân
b) Tam giác HAF là tam giác cân
c) HA là tiếp tuyến của đường tròn (O)