Ta có sin2x + cos2x = 1 => sin2x = 1 – cos2x
Do đó P = 3sin2x + cos2x = 3(1 – cos2x) + cos2x
=> P = 3 – 2cos2x
Với cosx = => cos2x = => P= 3 – =
Ta có sin2x + cos2x = 1 => sin2x = 1 – cos2x
Do đó P = 3sin2x + cos2x = 3(1 – cos2x) + cos2x
=> P = 3 – 2cos2x
Với cosx = => cos2x = => P= 3 – =
tính giá trị biểu thức P bằng sin2-sinx*cosx+2cos2x/2sin2x-cos2x biết tan x bằng 3
Cho góc x, với \(\cos x=\dfrac{1}{3}\). Tính giá trị của biểu thức : \(P=3\sin^2x+\cos^2x\) ?
Rút gọn biểu thức \(A=\dfrac{\sin x+\sin2x+\sin3x}{\cos x+\cos2x+\cos3x}\)
Tính giá trị biểu thức \(P=\dfrac{cos^237^0+\sin^2143^0+\sin26^0}{1+\sin154^0}\)
cho hình vuông ABCD. Xác định các góc sau và tính giá trị lượng giác của các góc đó
(AC;BC) ; (CA;DC)
Biết \(\sin\alpha=\dfrac{2}{3}\). Tính giá trị của biểu thức \(3=\dfrac{\cot\alpha-\tan\alpha}{\cot\alpha+\tan\alpha}\) ?
Biết \(\tan\alpha=\sqrt{2}\). Tính giá trị của biểu thức \(A=\dfrac{3\sin\alpha-\cos\alpha}{\sin\alpha+\cos\alpha}\) ?
Gọi M là giá trị lớn nhất của biểu thức \(S=\sin x+\sin y+\sin\left(3x+y\right)-2\sin\left(2x+y\right).\cos x\) , \(\forall x\in\left(0,2\pi\right),\forall y\in\left(0,2\pi\right)\) . Biết \(M=\dfrac{a\sqrt{b}}{c}\) (Với a,b,c \(\in Z^+,\dfrac{a}{c}\) là phân số tối giản, b < 12). Tính \(P=a+b-c\)
Cho tam giác ABC. Giá trị nhỏ nhất của biểu thức \(Q=\dfrac{bc.\cos A+ac.\cos B+ab.\cos C}{S}\) bằng bao nhiêu ?