Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyen Thi Thanh Thao

Cho \(\frac{a}{b}=\frac{c}{b}\) CM :

a )\(\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\)

b ) \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\)

Lightning Farron
5 tháng 9 2016 lúc 14:37

a)Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\Leftrightarrow\left(\frac{bk-b}{dk-d}\right)^2=\frac{bkb}{dkd}\)

Xét VT \(\left(\frac{bk-b}{dk-d}\right)^2=\left(\frac{b\left(k-1\right)}{d\left(k-1\right)}\right)^2=\left(\frac{b}{d}\right)^2=\frac{b^2}{d^2}\left(1\right)\)

Xét VP \(\frac{bkb}{dkd}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) =>Đpcm

Nguyễn Huy Tú
5 tháng 9 2016 lúc 14:42

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Ta có:

\(a=bk\)

\(c=dk\)

a) Ta có:
 

\(\left(\frac{a-b}{c-d}\right)^2=\left(\frac{bk-b}{dk-d}\right)^2=\left[\frac{b\left(k-1\right)}{d\left(k-1\right)}\right]^2=\left(\frac{b}{d}\right)^2\) (1)

\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\) (2)

Từ (1) và (2) suy ra \(\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\left(đpcm\right)\)

b) Ta có:

\(\left(\frac{a+b}{c+d}\right)^3=\left(\frac{bk+b}{dk+d}\right)^3=\left[\frac{b\left(k+1\right)}{d\left(k+1\right)}\right]^3=\left(\frac{d}{b}\right)^3\) (1)

\(\frac{a^3-b^3}{c^3-d^3}=\frac{\left(bk\right)^3-b^3}{\left(dk\right)^3-d^3}=\frac{b^3.k^3-b^3}{d^3.k^3-d^3}=\frac{b^3.\left(k^3-1\right)}{d^3.\left(k^3-1\right)}=\frac{b^3}{d^3}=\left(\frac{b}{d}\right)^3\) (2)

Từ (1) và (2) suy ra\(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\) (đpcm)

 

 


 

Lightning Farron
5 tháng 9 2016 lúc 14:40

b)Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\Leftrightarrow\left(\frac{bk+b}{dk+d}\right)^3=\frac{\left(bk\right)^3-b^3}{\left(dk\right)^3-d^3}\)

Xét VT \(\left(\frac{bk+b}{dk+d}\right)^3=\left(\frac{b\left(k+1\right)}{d\left(k+1\right)}\right)^3=\left(\frac{b}{d}\right)^3=\frac{b^3}{d^3}\left(1\right)\)

Xét VP \(\frac{\left(bk\right)^3-b^3}{\left(dk\right)^3-d^3}=\frac{b^3k^3-b^3}{d^3k^3-d^3}=\frac{b^3\left(k-1\right)}{d^3\left(k-1\right)}=\frac{b^3}{d^3}\left(2\right)\)

Từ (1) và (2) =>Đpcm


Các câu hỏi tương tự
Bình Nguyễn Ngọc
Xem chi tiết
Nguyen Thi Thanh Thao
Xem chi tiết
Diệp Thiên Giai
Xem chi tiết
Mai Lan Anh
Xem chi tiết
StopBitch
Xem chi tiết
Alayna
Xem chi tiết
Hoàng Hải Ngọc
Xem chi tiết
Đào Việt Anh
Xem chi tiết
Chu Thiên Anh
Xem chi tiết