Cách khác:
Cách khác:
Cho x; y; z; \(\ne\) 0 thỏa mãn \(\frac{yz}{zx}=\frac{1}{2}\)
Tính \(\frac{x}{yz}\div\frac{y}{zx}\)
cho a,b,c là các số thực khác 0 . Tìm các số thực x,y,z khác 0 thỏa mãn :
\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
Tìm x,y,z trong các tỉ lệ thức sau: \(\frac{xy+1}{9}=\frac{xz+2}{15}=\frac{yz+3}{27}v\text{à}xy+yz+zx=11\)
tìm x , y , z biết
a, 3x=4y , 3y =5z và x - y - z=1
b, \(\frac{x}{2}=\frac{y}{7}=\frac{5}{z}\) và yz - xy - z2 = 72
c, \(\frac{x}{2}=\frac{y}{7}=\frac{z}{8}\) và 2x2 + xy - xz = 54
d, \(\frac{x+3}{5}=\frac{y-4}{3}=\frac{z-5}{2}\) và 2x - 3y - z = -26
cho ba số dương \(0\le x\le y\le z\le1\) chứng minh \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le2\)
cho xyz = 1. Tính giá trị biểu thức A = \(\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)
Tìm các số x,y,z khác 0 biết: \(\frac{xy}{ay+bx}=\frac{yz}{cy+bz}=\frac{xz}{az+cx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(a,b,c\ne0\right)\)
Tìm các số x,y,z khác 0 biết: \(\frac{xy}{ay+bx}=\frac{yz}{cy+bz}=\frac{xz}{az+cx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(a,b,c\ne0\right)\)
tìm các số tự nhiên X,Y,Z bt
\(\frac{XY}{ZY+4X}=\frac{YZ}{4Z+6}=\frac{ZY}{6X+Z}=\frac{X^2+Y^2+Z^2}{2^2+4^2+6^2}\)