\(E\cup F\) là \(\left(-\infty;\frac{101}{5}\right)\)
\(E\cup F\) là \(\left(-\infty;\frac{101}{5}\right)\)
Xác định tập hợp
A = ( -3;5] \(\cup\) [8;10] \(\cup\) [2;8)
B = [0;2] \(\cup\) (\(-\infty;5\)] \(\cup\left(1;+\infty\right)\)
C = [ -4;7] \(\cup\) (0;10)
D = ( \(-\infty;3\) ] \(\cup\left(-5;+\infty\right)\)
E = \(\left(3;+\infty\right)\ \)\ ( \(-\infty;1\)]
F = ( 1;3] \ [0;4)
Cho E:\(\left(-3;\frac{1}{a}\right)\) , F:(a;\(+\infty\) )
tìm a để E\(\cap\) F \(\ne\phi\)
Cho tập hợp \(A=\left[m-1;\frac{m+1}{2}\right]\) và \(B=\left(-\infty;-2\right)\cup[2;+\infty)\). Tìm m để
a) \(A\subset B\)
b) \(A\cap B=\phi\)
Tìm phần bù của accs tập hợp sau theo R:
a, \(A=[-12;10)\)
b, \(B=\left(-\infty;-2\right)\cup\left(2;+\infty\right)\)
c, \(C=[3;+\infty)\backslash\left\{5\right\}\)
d, \(D=\left\{x\in R|-4< x+2\le5\right\}\)
Tìm phần bù của accs tập hợp sau theo R:
a, \(A=[-12;10)\)
b, \(B=\left(-\infty;-2\right)\cup\left(2;+\infty\right)\)
c, \(C=[3;+\infty)\backslash\left\{5\right\}\)
d, \(D=\left\{x\in R|-4< x+2\le5\right\}\)
Tập xác định của hàm số \(y=\frac{x+2}{x^3-1}\)là
A.\(D=\left(-\infty;1\right)\cup\left(1;+\infty\right)\)
B. D = R
C.\(D=[1;+\infty)\)
Cho tập hợp A\(=\left(-\infty;3\right),B=[\frac{m}{2};+\infty)\).Tìm điều kiện của tham số m để hai tập hợp A và B có phần tử chung
Áp dụng bđt cô si để tìm GTLN của các bt sau:
a) \(y=\left(x+3\right)\left(5-x\right)\) với -3≤x≤5
b) \(y=x\left(6-x\right)\) với 0≤x≤6
c) \(y=\left(x+3\right)\left(5-2x\right)\) với -3≤x≤\(\frac{5}{2}\)
d) y=(2x+5)(5-x) với \(\frac{-5}{2}\le x\le5\)
e) y=(6x+3)(5-2x) với \(\frac{-1}{2}\le x\le\frac{5}{2}\)
f) \(y=\frac{x}{x^2+2}\) với x>0
g) \(y=\frac{x^2}{\left(x^2+3\right)^3}\)
\(a\frac{3}{5}-\left(-\frac{1}{2}\right)+\frac{2}{5} b\frac{3}{7}.19\frac{1}{3}-\frac{3}{7}.33\frac{1}{3}c\left(\frac{3^4}{5}\right).\left(\frac{5^3}{3}\right)d\frac{11}{23}-\frac{5}{41}+\frac{13}{24}+0,5-\frac{36}{41}\)