cho nửa đường tròn tâm O có đường kính AB=2R. Trên đường tròn O lấy điểm M ( MA<MB) . Tiếp tuyến tại M của O cắt hai tiếp tuyến tại A và B của đường tròn O lần lượt tại C và D a) chứng minh CD = AC+BD b) vẽ đường thẳng BM cắt tia AC tại E và vẽ MH vuông góc với AB tại H Chứng minh OC song song MB và ME.MB=AH.AB c) CM HM là tia phân giác của góc CHD
Cho đường tròn (O;R), đường kính AB. Lấy điếm M thuộc đường tròn (O) (AM<BM). Tiếp tuyến tại A của đường tròn tâm O cắt tia BM tại C.
1. Cm AC^2=CM.CB
2. Tia CO cắt đường tròn (O) lần lượt tại 2 điếm D và E ( điểm D nằm giữa hai điếm C và E). Cm: CM.CB=CD.CE
3. Vẽ dây AK vuông góc CO tại H.Cm: CK là tiếp tuyến của đường tròn (O).
Cho nửa đường tròn (O), đường kính AB. Từ một điểm M nằm trong nửa đường tròn đó (M ∉ AB), kẻ đường vuông góc với AB tại H (H ≠ A, B và O). Kéo dài AM và BM cắt nửa đường tròn (O) lần lượt tại C và D. Gọi N là giao điểm của AD và BC.a) Chứng minh 4 điểm D, M, C, N cùng thuộc một đường tròn.b) Chứng minh 3 điểm M, N, H thẳng hàng.c) Chứng minh OD là tiếp tuyến của đường tròn đi qua 4 điểm D, M, C, N.
Cho đường tròn (O;R) đường kính AB. Kẻ tiếp tuyến Ax với đường tròn. Trên Ax lấy điểm K(AK≥R). Qua K kẻ tiếp tuyến KM tới đường tròn(O). Đường thẳng d vuông góc với AB tại O, cắt MB tại E.
a. chứng minh 4 điểm K,A,O,M thuộc một đường tròn
b. OK cắt AM tại I, chứng minh OI.OK=OA2
Bài 13. Cho (O, R) và điểm M nằm ngoài đường tròn. Qua M kẻ hai tiếp tuyến MA, MB với (O; R). Đoạn OM cắt đường thẳng AB tại điểm H và cắt (O, R) tại I. I. CMR: M, A, B, O cùng thuộc 1 đường tròn. 2. Kẻ đường kính AD với (O, R). Đoạn MD cắt (O, R) tại C. CMR: MH. MO= MC. MD Em cần gấp
Giúp mình với ;-; làm ơn
Cho nửa đường tròn O bán kính R, đường kính AB. Từ A và B vẽ hai tiếp tuyến Ax, By với nửa đường tròn. Lấy M là một điểm tùy ý trên nửa đường tròn, vẽ tiếp tuyến tại M cắt Ax tại C, By tại D. Gọi A' là giao điểm của BM với Ax, B' là giao điểm của AM với By. Chứng minh rằng:
a, ΔA′AB∼ΔABB′,AA′.BB′=AB.
b, CA = CA' và DB = DB'.
c, Ba đường B'A', DC, AB đồng qui khi góc AOM khác góc vuông
Cho đường tròn (O) đường kính BC, điểm M thuộc đường tròn (M khác C và B). Tiếp tuyến tại C của đường tròn (O) cắt tia BM tại N. Lấy A là điểm chính giữa cung nhỏ MC, tia CA cắt tia BM tại D. E là giao điểm AB và MC
a) Tính số đo của góc BMC
b) Chứng minh tứ giác ADME nội tiếp đường tròn
c) Chứng minh DM/DN=BM/BN
Cho đường tròn tâm O bán kính R, điểm A thuộc đường tròn. Kẻ Ax là tiếp tuyến của đường tròn tại A. Trên tia Ax lấy điểm M, đường thẳng d đi qua M và không đi qua O cắt đường tròn tâm O tại điểm B và C (B nằm giữa C và M, góc ABC < 90 độ).Gó I là trung diểm của BC.
1)chứng minh 4 điểm A,O,I,M cùng thuộc một đường tròn
2)Vẽ đườn kính AD của đường tròn. Gọi H là trực tâm của tam giác ABC. Chứng minh H đối xứng với D qua I. Tính AH biết đường tròn tâm O cách đường thẳng d là 2 dm