Pt hoành độ giao điểm: \(x^2-mx+m-1=0\)
\(a+b+c=1-m+m-1=0\) \(\Rightarrow\) pt luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=1\\x_2=m-1\end{matrix}\right.\)
\(A=\frac{2\left(m-1\right)+3}{1+\left(m-1\right)^2+2\left(m-1\right)+2}=\frac{2m+1}{m^2+2}\Leftrightarrow A.m^2-2m+2A-1=0\)
\(\Delta'=1-A\left(2A-1\right)=-2A^2+A+1\ge0\) \(\Rightarrow\frac{-1}{2}\le A\le1\)
\(\Rightarrow\left\{{}\begin{matrix}A_{max}=1\Rightarrow m=1\\A_{min}=\frac{-1}{2}\Rightarrow m=-2\end{matrix}\right.\)
Đúng 0
Bình luận (1)