Cho hai đường tròn không đồng tâm (O;R) và (O’;R’) và một điểm A trên (O;R) . Xác định điểm M trên (O;R) và diểm N trên (O’;R’) sao cho \(\overrightarrow{MN}=\overrightarrow{OA}\).
cho tam giác đều A,B,C. Gọi M,N,P lần lượt là trung điểm của BC,CA,AB. a) Xác định ảnh của A,B qua phép tịnh tiến MC. b)Xác định ảnh của đường thẳng MP qua phép tịnh tiến vecto NA. c) Xác định ảnh của tam giác CMN qua phép tịnh tiến vecto CA. d)Xác định ảnh của hbh BMNP qua phép tịnh tiến (vecto BA- vecto BC)
Cho tam giác ABC có G là trọng tâm. Xác định ảnh của tam giác ABC qua phép tịnh tiến theo vectơ \(\overrightarrow{AG}\). Xác định điểm D sao cho phép tịnh tiến theo vectơ \(\overrightarrow{AG}\) biến D thành A ?
Trong mặt phẳng tọa độ Oxy , với α , a , b là những số cho trước , xét phép biến hình F biến mỗi điểm M(x ; y) thành điểm M'(x' ; y') , trong đó :
\(\begin{cases}x'=x\cos\alpha-y\sin\alpha+a\\y'=x\sin\alpha+y\cos\alpha+b\end{cases}\)
a) cho 2 điểm M(x1 ; y1) , N(x2 ; y2) và gọi M' , N' lần lượt là ảnh của M , N qua phép F . Hãy tìm tọa độ của M' và N' .
b) tính khoảng cách d giữa M và N ; khoảng cách d' giữa M' và N' .
c) phép F có phải ;à phép dời hình hay không ?
d) khi α=0 , chứng tỏ rằng F là phép tịnh tiến .
trong mặt phẳng tọa độ Oxy , xét các phép biến hình sau đây :
- phép biến hình F1 biến mỗi diểm M(x ; y) thành điểm M'(y ; -x) .
- phép biến hình F2 biến mỗi diểm M(x ; y) thành điểm M'(2x ; y) .
trong 2 phép biến hình trên , phép nào là phép dời hình ?
Cho hai điểm B,C cố định nằm trên (O,R) và một điểm A thay đổi trên đường tròn đó. Chứng minh rằng trực tâm của tam giác ABC nằm trên một đường tròn cố định .
Cho hai đường tròn (O;R) và (O’;R’) cùng với hai điẻm A,B . Tìm điểm M trên (O;R) và điểm M’ trên (O’R’) sao cho \(\overrightarrow{MM'}=\overrightarrow{AB}\).
Cho hình chữ nhật ABCD . Trên tia đối của tia AB lấy điểm P , trên tia đối của tia CD lấy điểm Q . Hãy xác định điểm M trên BC và điểm N trên AD sao cho MN//CD và PN+QM nhỏ nhất .
cho 2 phép tịnh tiến T\(\overrightarrow{u}\) và T\(\overrightarrow{v}\) . Với điểm M bất kỳ , T\(\overrightarrow{u}\) biến điểm thành điểm M' , T\(\overrightarrow{v}\) biến M' thành M'' . Chứng tỏ rằng phép biến hình biến M thành M'' là một phép tịnh tiến .
BT2: Cho hai điểm B, C cố định trên đường tròn tâm O và một điểm A thay đổi trên đường tròn đó. Tìm quỹ tích trực tâm H của \(\Delta ABC\)