Giải
a) Qua M kẻ MH \(\perp\) AB, MK \(\perp\) DC thì H, M, K thẳng hang
SAMB + SDMC = \(\frac{1}{2}\)AB . MH + \(\frac{1}{2}\)DC . MK
= \(\frac{1}{2}\)DC . (MH + MK)
= \(\frac{1}{2}\)DC . HK
= \(\frac{1}{2}\)SABCD
Suy ra SMAD + SMBC = \(\frac{1}{2}\)SABCD
Từ đó suy ra SMAB + SMCD = SMAD + SMBC
b) Theo hình vẽ:
SMADC = SADC + SMAC = \(\frac{1}{2}\)SABCD + SMAC
SMABC = SABC - SMAC = \(\frac{1}{2}\)SABCD + SMAC
SMADC - SMABC = 2SMAC
Vậy SMAC = \(\frac{1}{2}\)|SMADC - SMABC|