Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Chiền

cho \(\dfrac{a}{b}=\dfrac{c}{d}vớic\ne\pm1\). Chứng minh rằng \(\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}=\dfrac{ab}{cd}\)

Nguyễn Huy Tú
14 tháng 4 2017 lúc 19:45

Giải:

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow k=\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a-c}{b-d}\) ( tính chất dãy tỉ số bằng nhau )

\(\Rightarrow k^2=\left(\dfrac{a-c}{b-d}\right)^2=\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}\) (1)

\(k^2=\dfrac{a}{b}.\dfrac{c}{d}=\dfrac{ac}{bd}\) (2)

Từ (1), (2) \(\Rightarrow\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}=\dfrac{ab}{cd}\left(đpcm\right)\)

Vậy...

Cô Nàng Song Tử
14 tháng 4 2017 lúc 19:56

Đề sai rồi bạn ạ

Phải là : Cho\(\dfrac{a}{b}=\dfrac{c}{d}\) với c≠±1. Chứng minh rằng \(\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}=\dfrac{ac}{bd}\)

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Suy ra: \(\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}=\dfrac{\left(bk-dk\right)^2}{\left(b-d\right)^2}=\dfrac{\left[k\left(b-d\right)\right]^2}{\left(b-d\right)^2}\)=k2 (1)

\(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=\dfrac{k^2.bd}{bd}=k^2\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}=\dfrac{ac}{bd}\)


Các câu hỏi tương tự
Phạm Đức Minh
Xem chi tiết
Nguyễn Thị Chiền
Xem chi tiết
Phong Nguyễn Trần
Xem chi tiết
Chi Pu
Xem chi tiết
Nhã Doanh
Xem chi tiết
Yến Vy
Xem chi tiết
Trần KIều Giáng Hương
Xem chi tiết
Sương Đặng
Xem chi tiết
Khuất Đăng Mạnh
Xem chi tiết