A=\(\dfrac{7}{19}\).\(\dfrac{8}{11}\) +\(\dfrac{7}{19}\).\(\dfrac{3}{11}\)+\(\dfrac{12}{19}\) Kết quả phép tính là? A.1 B.2 C.3 D.4
cho 4 số khác 0 là a,b,c,d thỏa mãn b2=ac, c2=ad, b3+27.c3+8.d3 khác 0
CMR:\(\dfrac{a}{b}\)=\(\dfrac{c.d^2+27.b^3+8.c^2}{b^3+27.c^3+8.d^3}\)
giúp mình với
1, tính
a, \(7\times\sqrt{\dfrac{6^2}{7^2}}-\sqrt{25}+\sqrt{\dfrac{\left(-3\right)^2}{2}}\)
b, \(-\sqrt{\dfrac{64}{49}}-\dfrac{3}{5}\times\sqrt{\dfrac{25}{64}}+\sqrt{0,25}\)
c, \(\sqrt{\dfrac{10000}{5}}-\dfrac{1}{4}.\sqrt{\dfrac{16}{9}}+\sqrt{\dfrac{\left(-3\right)^2}{\left(4\right)}}\)
d, \(\left|\dfrac{1}{4}-\sqrt{0,0144}\right|-\dfrac{3}{2}+\sqrt{\dfrac{81}{169}}\)
bài 1: tính
a) 3/4+(-5/2)+(-3/5)
b) \(\sqrt{\left(7\right)^2}+\sqrt{\dfrac{25}{16}-\dfrac{3}{2}}\)
c)\(\dfrac{1}{2}.\sqrt{100}-\sqrt{\dfrac{1}{16}+\left(\dfrac{1}{3}\right)^0}\)
Tìm các số nguyên x để các biểu thức sau có gtrị là 1 số nguyên:
a)\(A=\dfrac{7}{\sqrt{x}}\)
b)\(B=\dfrac{3}{\sqrt{x}-1}\)
c)\(C=\dfrac{2}{\sqrt{x}-3}\)
Giải hộ mình bài này với ạ! Cảm ơn ạ!
Tìm các số x,y,z, biết rằng:
a, \(\dfrac{2x}{3}\)=\(\dfrac{3y}{4}\)=\(\dfrac{4z}{5}\)và x+y+z=49
b, \(\dfrac{x-1}{2}\)=\(\dfrac{y-2}{3}\)=\(\dfrac{z-3}{4}\)và 2x+3y-z=50
Giải cụ thể giúp mình với nhé!!!
a,\(\sqrt{1}+\sqrt{9}+\sqrt{25}+\sqrt{49}+\sqrt{81}\) c\(\sqrt{0,04}+\sqrt{0,09}+\sqrt{0,16}\)
b,\(\sqrt{\dfrac{1}{4}}+\sqrt{\dfrac{1}{9}}+\sqrt{\dfrac{1}{36}}+\sqrt{\dfrac{1}{16}}\) e\(\sqrt{2^2}+\sqrt{4^2}+\sqrt{\left(-6^2\right)}+\sqrt{\left(-8^2\right)}\)
j,\(\sqrt{1,44}-\sqrt{1,69}+\sqrt{1,96}\)
g, \(\sqrt{\dfrac{4}{25}}+\sqrt{\dfrac{25}{4}}+\sqrt{\dfrac{81}{100}}+\sqrt{\dfrac{9}{16}}\)
d\(\sqrt{81}-\sqrt{64}+\sqrt{49}\)
Trong các số sau, số nào bằng \(\dfrac{3}{7}\) ?
\(a=\dfrac{39}{91}\) \(b=\sqrt{\dfrac{3^2}{7^2}}\) \(c=\dfrac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{91^2}}\) \(d=\dfrac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}\)
1) Chứng minh rằng : \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>10\)
2) Tìm x,y để : \(C=-18-\left|2x-6\right|-\left|3y+9\right|\)đạt giá trị lớn nhất .
Helppp Meeee!!! Mơn trc ạ !!! <3