Trong mặt phẳng tọa độ Oxy cho ba điểm A(-1; -2), B(3; 2), C(4; -1). Biết điểm E(a; b) di động trên đường thẳng AB sao chop \(\left|2\overrightarrow{EA}+3\overrightarrow{EB}-\overrightarrow{EC}\right|\) đạt Min. Tính \(a^2-b^2\)
Cho tam giác ABC nội tiếp (O ; R). Gọi E là trung điểm của AB và F là điểm thỏa mãn \(\overrightarrow{AC}=3\overrightarrow{AF}\). Vẽ hình bình hành AEMF. Biểu diễn giá trị nhỏ nhất của P theo R
P = (MA + MB + MC)2 + 11OM2
Cho tam giác ABC có \(\overrightarrow{AM}=-\dfrac{1}{2}\overrightarrow{AB}+\dfrac{3}{2}\overrightarrow{AC}\). Tỉ số diện tích\(\dfrac{S_{\Delta ABM}}{S_{\Delta ACM}}\) là ?
cho tam giác ABC, M là trung điểm của AB, D là trung điểm của BC. Điểm N thuộc AC sao cho \(\overrightarrow{CN}=2\overrightarrow{NA}\). K là trung điểm của MN. Phân tích \(\overrightarrow{AK}\) và \(\overrightarrow{KD}\) theo hai vecto \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
Cho △ABC gọi I là điểm trên cạnh BC sao cho độ dài CI =\(\dfrac{3}{2}\)BI và J ∈ BC kéo dài sao cho độ dài JB =\(\dfrac{2}{5}\)JC
a. Phân tích \(\overrightarrow{AI}\), \(\overrightarrow{AJ}\) theo 2 véctơ \(\overrightarrow{AB}\), \(\overrightarrow{AC}\). Từ đó phân tích AB, AC theo AI. AJ
b. G là trọng tâm △ABC, phân tích \(\overrightarrow{AG}\) theo các véctơ \(\overrightarrow{AI}\), \(\overrightarrow{AJ}\)
Cho các véctơ \(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\) thỏa mãn \(\left|\overrightarrow{a}\right|=x,\left|\overrightarrow{b}\right|=y,\left|\overrightarrow{c}\right|=z\) và \(\overrightarrow{a}+\overrightarrow{b}+3\overrightarrow{c}=\overrightarrow{0}\) Tính \(A=\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}.\overrightarrow{c}+\overrightarrow{c}.\overrightarrow{a}\)
Cho tam giác ABC, M là 1 điểm trong tam giác ABC. Đường thẳng AM cắt BC tại D, BM cắt CA tại E, CM cắt AB tại F. CMR nếu \(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{0}\) thì M là trọng tâm tam giác ABC.
Cho tam giác ABC vông tại A, I là trung điểm của đường cao AH. CMR: \(BC^2.\overrightarrow{IA}+AC^2.\overrightarrow{IB}+AB^2.\overrightarrow{IC}=\overrightarrow{0}\).
Cho hình bình hành ABCD có tâm O . Điểm N là trung điểm của AB , G là trọng tâm tam giác ABC .
Tìm điểm F sao cho \(2\overrightarrow{FA}+2\overrightarrow{FB}=3\overrightarrow{FC}-\overrightarrow{FD}\)