(ko cần vẽ hình) Cho ΔABC vuông tại A. Có D ϵ AB, E ϵ AC
A) Chứng minh CD2 - CB2 = ED2 - EB2
a) ΔABC có đường cao AH. Chứng minh: AB^2 + AC^2 = BC^2 + CH^2 + 2AH^2
b) Cho ΔABC nhọn (AB > AC) có đường cao AH, E là điểm tùy ý trên AH
Chứng minh AB^2 - AC^2 = EB^2 - EC^2
c) Cho ΔABC có ba góc nhọn, AB = AC. Vẽ đường cao CH
Chứng minh AB^2 + BC^2 + CA^2 = BH^2 +2AH^2 + 3CH^2
Bài 5. Cho tam giác ABC vuông tại A( AB > AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD= MA
a) Cho AB= 8cm, BC= 10cm. Tính AC?
b) Chứng minh DAMB = D DMC, từ đó suy ra CD ^ AC
c) Vẽ AH vuông góc với BC tại H, trên tia đối của HA lấy E sao cho HE = HA. Chứng minh: DACE cân
d)Chứng minh BD = CE.
Cho ΔABC vuông tại A có AB=6cm,BC=8cm. a)Tính AC?
b)Vẽ AH ⊥ BC (H ϵ BC). Tính AH?
: Cho tam giác ABC cân tại C. (CA = CB). Vẽ AH vuông góc với BC ( H thuộc BC), BK vuông góc với AC
(K thuộc AC). AH cắt BK tại I. Chứng minh:
a) AH = BK b) CI là tia phân giác của góc ACB?
c) Tia CI cắt AB ở D. Chứng minh CD là đường trung trực của AB.
d) Nếu AC = 20, CD = 16. Tính chu vi tam giác ABC?
e) Chứng minh HD = ½. AB?
Cho tam giác ABC vuông tại A kẻ AH vuông góc với BC
A/chứng minh: AB^2+CH^2 = AC^2+BH^2
B/trên AB lấy E trên AC lấy điểm F chứng minh EF<BC
C/biết AB=6cm AC=8CM tính AH,BH,CH
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC
a/ Chứng minh: góc AHB = góc AHC
b/ Giả sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH
c/ Trên tia đối của tia HA lấy điểm M sao cho HM = HA. Chứng minh ABM cân
d/ Chứng minh BM // AC
cho tam giác abc có ab=ac,vẽ tia ak là phân giác của góc bac(k thuộc bc);a)chứng minh tam giác abk=tam giác ack;b)chứng minh ak vuông góc với bc;c)trên tia đối của tia ka lấy điểm h sao cho kh=ka chứng minh ab=ch
Cho DABC vuông tại A, đường cao AH, trên đó lấy điểm D. Trên tia đối của tia HA lấy E sao cho HE = AD. Đường vuông góc với AH tại D cắt AC tại F.
Chứng minh rằng: EB ^ EF.