a, Kẻ \(CH\perp AB\Rightarrow CH=AC.sin60^o=\dfrac{8.\sqrt{3}}{2}=4\sqrt{3}\)
\(\Rightarrow BC=\dfrac{CH}{sin45^o}=\dfrac{4\sqrt{3}}{\dfrac{\sqrt{2}}{2}}=4\sqrt{6}\)
\(AH=AC.cosA=8.cos60^o=4\)
\(BH=\dfrac{CH}{tan45^o}=4\sqrt{3}\)
\(\Rightarrow AB=AH+BH=4\sqrt{3}+4\)
\(\widehat{C}=180^o-\widehat{A}-\widehat{B}=180^o-60^o-45^o=75^o\)
b, \(S_{ABC}=\dfrac{1}{2}.AC.AB.sinA=\dfrac{1}{2}.8.\left(4+4\sqrt{3}\right).sin60^o=24+8\sqrt{3}\)