Cho ΔABC có :
AB = AC . M nằm trong Δ sao cho MA = MC . N là trung điểm của BC . Chứng minh rằng :
a) AM là phân giác của BAC
b) A ; M ; N thẳng hàng
c) MN là trung trực của BC
1. Cho ΔABC có AB = AC và AB > BC. Gọi M là trung điểm của cạnh BC
a) Chứng minh rằng ΔABC = ΔACM và AM là đường trung trực của BC
b) Trên tia đối của tia MA , lấy điểm D sao cho MD = MA . Chứng minh AB //CD
Vẽ hình giùm em
cho tam giác ABC có AB=AC và M là trung điểm của BC . Qua B vẽ đường thẳng song song với AM và cắt tia CA tại D
a) Chứng minh tam giác AMB=AMC
b) Chứng minh AM là tia phân giác của BAC
c) Chứng minh ABD = ADB
d) Trên tia đối của tia BC lấy điểm E sao cho BE=BC . Tính số đo EDC khi ACB=50
Cho tam giác ABC, M trung điểm BC. Trên tia đối tia MA lấy điểm E sao cho ME = MA. Gọi I là một điểm trên AC, K là 1 điểm trên EB sao cho AI = EK.
a)Chứng minh rằng: tam giác AMC = EMB
b) chứng minh rằng: AB//EC.
c) Chứng minh rằng: Ba điểm I,M,K thẳng hàng.
1: Cho tam giác ABC có AB = AC, M là trung điểm của cạnh BC. a. Chứng minh: ABM=ACM b. Chứng minh AM BC
a) Vẽ tam giác ABC có BC = 2cm, AB = AC = 3cm
b) Gọi E là trung điểm của cạnh BC của tam giác ABC trong câu a). Chứng minh rằng AE là tia phân giác của góc BAC ?
Cho tam giác ABC có AB = AC. Gọi D, E là 2 điểm trên cạnh BC sao cho BD = DE =
EC. Biết AD = AE.
a) Chứng minh: ∆ ABE=∆ ACD.
b) Gọi M là trung điểm của BC. Chứng minh rằng AM là tia phân giác của góc DAE.
c) Giả sử góc DAE bằng 60 độ , tính các góc còn lại của tam giác ADE.
d) Chứng minh: AM vuông góc với BC.
Cho tam giác ABC có A=40° , AB=AC. Gọi M là trung điểm của BC.
a/ chứng minh ABM=ACM
b/ lấy D∈ AB, E∈ AC sao cho AD=AE. Chứng minh DE⊥AM; BC⊥AM