a) Vì \(\Delta ABC\) cân tại \(A\left(gt\right)\)
=> \(\left\{{}\begin{matrix}AB=AC\\\widehat{ABC}=\widehat{ACB}\end{matrix}\right.\) (tính chất tam giác cân).
Hay \(\widehat{EBC}=\widehat{DCB}.\)
Xét 2 \(\Delta\) vuông \(BEC\) và \(CDB\) có:
\(\widehat{BEC}=\widehat{CDB}=90^0\left(gt\right)\)
Cạnh BC chung
\(\widehat{EBC}=\widehat{CDB}\left(cmt\right)\)
=> \(\Delta BEC=\Delta CDB\) (cạnh huyền - góc nhọn).
=> \(BE=CD\) (2 cạnh tương ứng).
b) Xét 2 \(\Delta\) vuông \(ABD\) và \(ACE\) có:
\(\widehat{ADB}=\widehat{AEC}=90^0\left(gt\right)\)
\(AB=AC\left(cmt\right)\)
\(\widehat{A}\) chung
=> \(\Delta ABD=\Delta ACE\) (cạnh huyền - góc nhọn).
=> \(\widehat{ABD}=\widehat{ACE}\) (2 góc tương ứng).
Hay \(\widehat{ABI}=\widehat{ACI}.\)
Xét 2 \(\Delta\) \(ABI\) và \(ACI\) có:
\(AB=AC\left(cmt\right)\)
\(\widehat{ABI}=\widehat{ACI}\left(cmt\right)\)
Cạnh AI chung
=> \(\Delta ABI=\Delta ACI\left(c-g-c\right)\)
=> \(\widehat{BAI}=\widehat{CAI}\) (2 góc tương ứng).
=> \(AI\) là tia phân giác của \(\widehat{BAC}.\)
Chúc bạn học tốt!