Cho đa thức f(x)=ax^2 +bx +c(a,b,c là các hằng số). Chứng minh rằng:f(3). f(-2)>=0 nếu13a+b+2c=0
cho đa thức f(x)=ax^2 +bx +c(a,b,c là các hằng số). Chứng minh rằng:f(3). f(-2)>=0 nếu a,b thỏa mãn a +b=0
a)Cho B=x^2 - 3xy + 2y^2 +x và x-y=1. Tính giá trị của đa thức B
b) Cho đa thức f(x) = ax^2 +bx+ c với a,b,c là các hệ số thoả mãn 13a +b +2c. Chứng tỏ rằng: f(-2) × f(-3) bé hơn hoặc bằng 0
cho đa thức:
A= x^2 - 3xy - y^2 + 2x - 3y + 1
B = - 2x^2 + xy + 2y^3 - 3 - 5x + y
C = 7y^2 + 3x^2 - 4xy - 6x + 4y +5
tính A+B+C; A-B+C;A-B-C rồi xác định Bậc của đa thức đó
cho đa thức:
A= x^2 - 3xy - y^2 + 2x - 3y + 1
B = - 2x^2 + xy + 2y^3 - 3 - 5x + y
C = 7y^2 + 3x^2 - 4xy - 6x + 4y +5
tính A+B+C; A-B+C;A-B-C rồi xác định Bậc của đa thức đó
cho đa thức:
A= x^2 - 3xy - y^2 + 2x - 3y + 1
B = - 2x^2 + xy + 2y^3 - 3 - 5x + y
C = 7y^2 + 3x^2 - 4xy - 6x + 4y +5
tính A+B+C; A-B+C;A-B-C rồi xác định Bậc của đa thức đó
cho đa thức
A = x^2- 3xy - y^2 + 2x - 3y + 1
B = - 2x^2 + xy + 2y^3 - 3 - 5x + y
C = 7y^2 + 3x^2 - 4xy - 6x + 4y+5
tính a + b + c; a -b+c;a-b-c rồi xác định Bậc của đa thức đó
cho đa thức:
A= x^2 - 3xy - y^2 + 2x - 3y + 1
B = - 2x^2 + xy + 2y^3 - 3 - 5x + y
C = 7y^2 + 3x^2 - 4xy - 6x + 4y +5
tính A-B+C;A-B-C rồi xác định Bậc của đa thức đó
Bài 1:Tính giá trị biểu thức sau:
a/3x^2y+6x^2y^2+3xy^2 tại x=1/2,y=1/3
b/2(x+1).(y+2) tại x=2,y=-1
c/2x^2-y^2+2^3 tại x=1,y=-1,z=-1
d/ax^2+bx +3 tại x=1(a là hằng số)
e/ax^2+bx +c tại x=-1(a,b,c là hằng số)