a) Ta có: \(\sqrt {{x^2} - 4x + 4} = \sqrt {{{\left( {x - 2} \right)}^2}} \).
Do \({\left( {x - 2} \right)^2} \ge 0\) với mọi x nên căn thức đã cho xác định với mọi giá trị của x.
b) Với \(x \ge 2\) ta có:
\(\sqrt {{x^2} - 4x + 4} = \sqrt {{{\left( {x - 2} \right)}^2}} = \left| {x - 2} \right| = x - 2\)
c) Ta có:
\(\sqrt {x - \sqrt {{x^2} - 4x + 4} } = \sqrt {x - \left| {x - 2} \right|} = \sqrt {x - \left( {x - 2} \right)} = \sqrt 2 \) là hằng số
Do đó với mọi \(x \ge 2,\) biểu thức \(\sqrt {x - \sqrt {{x^2} - 4x + 4} } \)có giá trị không đổi.
Đúng 0
Bình luận (0)