Luyện tập chung trang 52

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Cho căn thức \(\sqrt{x^2-4x+4}\)

a) Hãy chứng tỏ rằng căn thức xác định với mọi giá trị của x.

b) Rút gọn căn thức đã cho với x ≥ 2.

c) Chứng tỏ rằng với mọi x ≥ 2, biểu thức \(\sqrt{x-\sqrt{x^2-4x+4}}\) có giá trị không đổi.

datcoder
30 tháng 9 lúc 23:47

a) Ta có: \(\sqrt {{x^2} - 4x + 4}  = \sqrt {{{\left( {x - 2} \right)}^2}} \).

Do \({\left( {x - 2} \right)^2} \ge 0\) với mọi x nên căn thức đã cho xác định với mọi giá trị của x.

b) Với \(x \ge 2\) ta có:

\(\sqrt {{x^2} - 4x + 4}  = \sqrt {{{\left( {x - 2} \right)}^2}}  = \left| {x - 2} \right| = x - 2\)

c) Ta có:

\(\sqrt {x - \sqrt {{x^2} - 4x + 4} }  = \sqrt {x - \left| {x - 2} \right|}  = \sqrt {x - \left( {x - 2} \right)}  = \sqrt 2 \) là hằng số

Do đó với mọi \(x \ge 2,\) biểu thức \(\sqrt {x - \sqrt {{x^2} - 4x + 4} } \)có giá trị không đổi.