Cho x,y,z là ba số dương thỏa mãn x+y+z = 3. CMR:
\(\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+zx}}+\dfrac{z}{z+\sqrt{3z+xy}}\le1\)
Cho các số thực dương thoả mãn: \(x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}=\dfrac{3}{2}\)
Cmr: \(x^2+y^2+z^2=\dfrac{3}{2}\)
1, Cho các số x,y,z không âm. \(\ne\)0. thỏa mãn: \(\dfrac{1}{x+1}+\dfrac{1}{y+2}+\dfrac{1}{z+3}\le1\)
Tìm GTNN của \(P=x+y+z+\dfrac{1}{x+y+z}\)
2, Cho các số x,y dương thỏa mãn đk: xy+yz+zx =671
CMR: \(\dfrac{x}{x^2-yz+2013}+\dfrac{y}{y^2-zx+2013}+\dfrac{z}{z^2-xy+2013}\ge\dfrac{1}{x+y+z}\)
cho 3 số dương x,y,z thỏa mãn \(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}=6\)
CMR: \(\dfrac{1}{3x+3y+2z}+\dfrac{1}{3x+2y+3z}+\dfrac{1}{2x+3y+3z}\le\dfrac{3}{2}\)
Cho các số thực dương $x,y,z$ thỏa mãn $x+y+z=1$. Chứng minh rằng:
\(\dfrac{x}{x+\sqrt{x+yz}}+\dfrac{y}{y+\sqrt{y+xz}}+\dfrac{z}{z+\sqrt{z+xy}}\le1\)
cho x, y là các số dương thỏa mãn xyz=1. CMR \(\dfrac{x^3}{\left(1+y\right)\left(1+x\right)}+\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{z^3}{\left(1+y\right)\left(1+x\right)}>=\dfrac{3}{4}\)
Cho 3 số dương x; y; z thỏa mãn xyz = 1.
Tính giá trị của biểu thức
M = \(\dfrac{x+2xy+1}{x+xy+xz+1}+\dfrac{y+2yz+1}{y+yz+yx+1}+\dfrac{z+2zx+1}{z+zx+z+1}\)
cho 3 số dương x,y,z thỏa mãn xyz=1.
CMR: \(\dfrac{xy}{x^3+y^3+xy}\)+\(\dfrac{yz}{y^3+z^3+yz}\)+\(\dfrac{xz}{x^3+z^3+xz}\)<1
cho x,y,z là các số nguyên dương với \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\)
Tìm max : \(\dfrac{x}{x^2+yz}+\dfrac{y}{y^2+xz}+\dfrac{z}{z^2+xy}\)