Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hải An

Cho các số x,y,z > 0 thỏa mãn x+y+z = 12 . Tìm gt lớn nhất của biểu thức :

A = \(\sqrt{4x+2\sqrt{x}+1}\) + \(\sqrt{4y+2\sqrt{y}+1}\) + \(\sqrt{4z+2\sqrt{z}+1}\)

 Mashiro Shiina
19 tháng 4 2018 lúc 13:02

Áp dụng bất đẳng thức Bunyakovsky:

\(NL^2=\left(\sqrt{4x+2\sqrt{x}+1}+\sqrt{4y+2\sqrt{y}+1}+\sqrt{4z+2\sqrt{z}+1}\right)^2\)

\(\le\left(1^2+1^2+1^2\right)\left(4x+2\sqrt{x}+1+4y+2\sqrt{y}+1+4z+2\sqrt{z}+1\right)\)

\(=3\left(4x+4y+4z\right)+3\left(2\sqrt{x}+2\sqrt{y}+2\sqrt{z}\right)+3\left(1+1+1\right)\)

\(=12\left(x+y+z\right)+6\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+9\)

\(=153+6\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)

Mặt khác,theo Bunyakovsky: \(\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le3\left(x+y+z\right)=36\)

\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le6\)

\(\Rightarrow153+6\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le153+36=189\)

\(\Rightarrow NL\le\sqrt{189}\)

Dấu "=" xảy ra khi: \(x=y=z=4\)


Các câu hỏi tương tự
camcon
Xem chi tiết
Big City Boy
Xem chi tiết
Agami Raito
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết