Ta có:
\(0=a^{100}+b^{100}-\left(a^{101}+b^{101}\right)\)
\(=a^{101}+b^{101}-\left(a^{102}+b^{102}\right)\)
\(\Rightarrow a^{100}\left(1-a\right)+b^{100}\left(1-b\right)\)
\(=a^{101}\left(1-a\right)+b^{101}\left(1-b\right)\)
\(\Rightarrow a^{100}\left(1-a\right)^2+b^{100}\left(1-b\right)^2=0\)
\(\Rightarrow a=b=1\)
Thay \(a=b=1\) vào biểu thức ta được:
\(P=a^{2014}+b^{2015}=1^{2014}+1^{2015}\)
\(=1+1=2\)
Vậy \(P=2\)