Do \(\left|a\right|;\left|b\right|;\left|c\right|\le1\Rightarrow a^{2018}+b^{2020}+c^{2022}\le a^2+b^2+c^2\)
Đặt \(\left(a;b;c\right)=\left(x-1;y-1;z-1\right)\Rightarrow\left[{}\begin{matrix}0\le x;y;z\le2\\x+y+z=3\end{matrix}\right.\)
Ta cần chứng minh: \(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\le2\)
\(\Leftrightarrow x^2+y^2+z^2-2\left(x+y+z\right)+3\le2\)
\(\Leftrightarrow x^2+y^2+z^2\le5\)
Thật vậy, do \(0\le x;y;z\le2\)
\(\Rightarrow\left(2-x\right)\left(2-y\right)\left(2-z\right)\ge0\)
\(\Leftrightarrow8-4\left(x+y+z\right)+2\left(xy+yz+zx\right)-xyz\ge0\)
\(\Leftrightarrow2\left(xy+yz+zx\right)\ge xyz+4\ge4\)
\(\Leftrightarrow\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)\ge4\)
\(\Leftrightarrow x^2+y^2+z^2\le5\) (đpcm)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;1;2\right)\) và hoán vị
Hay \(\left(a;b;c\right)=\left(-1;0;1\right)\) và hoán vị