Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hoàng

Cho các số thực a;b;c thỏa mãn:

\(\left|a\right|;\left|b\right|;\left|c\right|\le1\) và a+b+c=0

CMR \(a^{2018}+b^{2020}+c^{2022}\le2\)

Nguyễn Việt Lâm
5 tháng 3 2020 lúc 17:18

Do \(\left|a\right|;\left|b\right|;\left|c\right|\le1\Rightarrow a^{2018}+b^{2020}+c^{2022}\le a^2+b^2+c^2\)

Đặt \(\left(a;b;c\right)=\left(x-1;y-1;z-1\right)\Rightarrow\left[{}\begin{matrix}0\le x;y;z\le2\\x+y+z=3\end{matrix}\right.\)

Ta cần chứng minh: \(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\le2\)

\(\Leftrightarrow x^2+y^2+z^2-2\left(x+y+z\right)+3\le2\)

\(\Leftrightarrow x^2+y^2+z^2\le5\)

Thật vậy, do \(0\le x;y;z\le2\)

\(\Rightarrow\left(2-x\right)\left(2-y\right)\left(2-z\right)\ge0\)

\(\Leftrightarrow8-4\left(x+y+z\right)+2\left(xy+yz+zx\right)-xyz\ge0\)

\(\Leftrightarrow2\left(xy+yz+zx\right)\ge xyz+4\ge4\)

\(\Leftrightarrow\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)\ge4\)

\(\Leftrightarrow x^2+y^2+z^2\le5\) (đpcm)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;1;2\right)\) và hoán vị

Hay \(\left(a;b;c\right)=\left(-1;0;1\right)\) và hoán vị

Khách vãng lai đã xóa

Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Tống Cao Sơn
Xem chi tiết
Vương Thiên Nhi
Xem chi tiết
Nguyễn Anh Kim Hân
Xem chi tiết
em ơi
Xem chi tiết
dia fic
Xem chi tiết
Gay\
Xem chi tiết