Bài 3: Phương trình bậc hai một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
NGUYEN THI DIEP

Cho các số dương x;y;z thỏa mãn : x\(\ge\)y\(\ge\)z .Cm rằng :

\(\dfrac{x^2y}{z}+\dfrac{y^2z}{x}+\dfrac{z^2x}{y}\ge x^2+y^2+z^2\)

Lightning Farron
13 tháng 4 2017 lúc 18:47

Đề bài:Cho x,y,z dương thỏa mãn \(x\geq y\geq z>0\). CMR

\(\frac{x^2y}{z}+\frac{y^2z}{x}+\frac{z^2x}{y}\geq x^2+y^2+z^2\)

Giải

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(\dfrac{x^2y}{z}+\dfrac{y^2z}{x}+\dfrac{z^2x}{y}\right)\left(\dfrac{x^2z}{y}+\dfrac{y^2x}{z}+\dfrac{z^2y}{x}\right)\ge\left(x^2+y^2+z^2\right)^2\)

Vậy ta cần chứng minh \(\dfrac{x^2y}{z}+\dfrac{y^2z}{x}+\dfrac{z^2x}{y}\ge\dfrac{x^2z}{y}+\dfrac{y^2x}{z}+\dfrac{z^2y}{x}\)

Thật vậy ta có: \(\dfrac{x^2y}{z}+\dfrac{y^2z}{x}+\dfrac{z^2x}{y}-\dfrac{x^2z}{y}+\dfrac{y^2x}{z}+\dfrac{z^2y}{x}\ge0\)

\(\Leftrightarrow\dfrac{\left(xy+yz+xz\right)\left(x-y\right)\left(y-z\right)\left(x-z\right)}{xyz}\ge0\) (luôn đúng)


Các câu hỏi tương tự
Nguyễn Danh Tấn Tài
Xem chi tiết
phan thị minh anh
Xem chi tiết
ngọ nhâm
Xem chi tiết
Nguyễn Thị Thùy Dung
Xem chi tiết
nguyễn ngọc trang
Xem chi tiết
Đào Mai Phương
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
Uyên Nguyễn
Xem chi tiết
Nguyễn Thành Phát
Xem chi tiết