Ta có: Theo bất đẳng thức cauchy schwarz và bất đẳng thức cauchy với a;b;c>0 ta có:
\(\dfrac{1}{a^2}+\dfrac{1}{a^2}=\dfrac{\left(\sqrt{a}\right)^2}{a^3}+\dfrac{1}{a^2}\ge\dfrac{\left(\sqrt{a}+1\right)^2}{a^3+a^2}\ge\dfrac{4\sqrt{a}}{a^3+a^2}\)(1)
Tương tự \(\dfrac{1}{b^2}+\dfrac{1}{b^2}\ge\dfrac{4\sqrt{b}}{b^3+b^2}\left(2\right);\dfrac{1}{c^2}+\dfrac{1}{c^2}\ge\dfrac{4\sqrt{c}}{c^3+c^2}\left(3\right)\)
Cộng từng vế (1) ;(2);(3) vế theo vế rồi chia hai vế cho 2 ta có đpcm
Áp dụng BĐT Cauchy schwarz kết hợp với AM-GM cho các số dương ta có :
\(\dfrac{1}{a^2}+\dfrac{1}{b^2}=\dfrac{a}{a^3}+\dfrac{1}{b^2}\ge\dfrac{\left(\sqrt{a}+1\right)^2}{a^3+b^2}\ge\dfrac{4\sqrt{a}}{a^3+b^2}\)
\(\dfrac{1}{b^2}+\dfrac{1}{c^2}=\dfrac{b}{b^3}+\dfrac{1}{c^2}\ge\dfrac{\left(\sqrt{b}+1\right)^2}{b^3+c^2}\ge\dfrac{4\sqrt{b}}{b^3+c^2}\)
\(\dfrac{1}{c^2}+\dfrac{1}{a^2}=\dfrac{c}{c^3}+\dfrac{1}{a^2}\ge\dfrac{\left(\sqrt{c}+1\right)^2}{c^3+a^2}\ge\dfrac{4\sqrt{c}}{c^3+a^2}\)
Cộng từng vế của BĐT ta được :
\(2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\ge\dfrac{4\sqrt{a}}{a^3+b^2}+\dfrac{4\sqrt{b}}{b^3+c^2}+\dfrac{4\sqrt{c}}{c^3+a^2}\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{2\sqrt{a}}{a^3+b^2}+\dfrac{2\sqrt{b}}{b^3+c^2}+\dfrac{2\sqrt{c}}{c^3+a^2}\) ( đpcm )
Dấu \("="\) xảy ra khi \(a=b=c\)