Cho các số thực dương x, y, z thỏa mãn x+y+z\(=\)3.
Tìm giá trị nhỏ nhất của biểu thức P \(=\)\(\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\).
Cho x,y,z là các số thực dương thỏa mãn:x+y+z=3.Tìm GTNN P=\(\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\)
Tìm các số x, y, z thỏa mãn đẳng thức: \((2x-y)^2+(y-2)^2+\sqrt{(x+y+z)^2}\)\(=0\)
Cho x,y,z là các số thực không âm thỏa mãn:\(x^2+y^2+z^2=3\).Tìm GTLN P=xy+yz+zx+\(\frac{5}{x+y+z}\)
Cho các số thực x, y, z thỏa mãn: \(x^2+2y+1=y^2+2z+1=z^2+2x+1=0\) .
Tính giá trị biểu thức: \(x^{15}+y^{10}+z^{2018}\).
Mình đang rất gấp, ai giúp mình với,,,
Cho ác số dương x,y,z thỏa mãn \(x+y+z\) ≤ 1. CMR
\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\) ≥ \(\sqrt{82}\)
Bài 5. (3,0 điểm).
1) Tìm giá trị nhỏ nhất của biểu thức:
\(P=xy\left(x+4\right)\left(y-2\right)+6x^2+5y^2+24x-10y+2043\).
2) Cho các số x, y, z không âm thoả mãn x+y+x=1 . Chứng minh rằng:
x + 2y + z \(\ge\) 4(1-x) (1-y)(1-z)
Cho các số dương x,y thỏa mãn x+y=1 . Tìm giá trị nhỏ nhất của
P=\(\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)
Tìm các số thực dương x,y,z thỏa mãn :
\(\sqrt{3+x^2}+\sqrt{3+y^2}+\sqrt{3+z^2}=\frac{2}{x}+\frac{2}{y}+\frac{2}{z}=2x+2y+2z\)
P/s : Bài này em dự đoán \(x=y=z=1\) . Ai help em bài này với !!