CMR: (x-2)(x-4)+3>0 với mọi x
cmr \(\left(x-1\right)\left(x^3-1\right)\ge\)0 với mọi số thực x
từ đó cm \(a^4+b^4+c^4-\left(a^3+b^3+c^3\right)\ge\)0
với a,b,c là 3 số thực thỏa mãn a+b+c=3
b, \(D=\frac{x^5+2}{x^3}\) Với x > 0
4, (34, 36/ 221) Tìm GTNN của bt: a, E=\(x^2+\frac{2}{x^3}\) với x > 0; b, \(F=\frac{x^3+1}{x^2}\) Với x > 0
6, (68/28 BÙI VĂN TUYÊN) Tìm GTNN của bt: \(Q=\frac{x^2+2x+17}{2\left(x+1\right)}\) Với x > 0
7, (69/28 BÙI VĂN TUYÊN) Tìm GTNN của bt: \(R=\frac{x+6\sqrt{x}+34}{\sqrt{x}+3}\) Với x > 0
8, (70/28 BÙI VĂN TUYÊN) Tìm GTNN của bt: \(S=\frac{x^3+2000}{x}\) Với x > 0
P= 3-√x /√x +1
Cmr: với mọi x>=0 thì -1<P<=3
Giúp mk với các bạn
a) CMR với mọi số thực x,y > 0 ta có \(x^3+y^3\ge xy\left(x+y\right)\)
b) Cho a,b,c là các số thực dương thỏa mãn điều kiện abc=1. CMR:
\(\frac{1}{a+b+4}+\frac{1}{b+c+4}+\frac{1}{c+a+4}\le\frac{1}{2}\)
Cho bt A = \(\frac{\sqrt{x}-1}{\sqrt{x}+1}\). tìm GTNN của biểu thức: Q = \(\frac{A}{-x+3\sqrt{x}-2}\) với 0 =<x<4
cho x>= 0 CMR \(\left(x-1\right)^3>=\dfrac{3}{4}x-1\)
cho x>0, tìm GTNN của bt
\(A=4x+\dfrac{1}{4x}-\dfrac{4\sqrt{x}+3}{x+1}+2017\)
cho \(P=\dfrac{3}{x^4-x^3+x-1}+\dfrac{4}{x+1-x^4-x^3}-\dfrac{4}{x^5-x^4+x^3-x^2+x-1}\)
cmr:\(0< P< \dfrac{32}{9}\forall x=\pm1\)