a. \(A\in Z\Leftrightarrow\) \(\dfrac{a-1}{a+1}\in Z\) ( ĐKXĐ: a\(\ge\) 0; a\(\ne\) 1)
Ta có: \(\dfrac{a-1}{a+1}=\dfrac{a+1-2}{a+1}=\dfrac{a+1}{a+1}-\dfrac{2}{a+1}=1-\dfrac{2}{a+1}\)
Vì:\(1\in Z\Rightarrowđể1-\dfrac{2}{a+1}\in Zthì2⋮\left(a+1\right)hay\left(a+1\right)\inƯ_{\left(2\right)}=\left\{\pm1;\pm2\right\}\)
*) a+1=1 <=> a=0(TMĐK)
*) a+1= -1 <=> a= -2 (KTMĐK)
*) a+1=2 <=> a= 1(KTMĐK)
*) a+1= -2 <=> a= -3 (KTMĐK)
Vậy x\(\in\) {0} thì A\(\in Z\)