Ôn tập cuối năm phần số học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Havi Bui

Cho BT A=\(\dfrac{x^2-1}{x^2-2x+1}\)

B=(\(\dfrac{x-1}{x+2}\)-\(\dfrac{x+1}{x-2}\)):\(\dfrac{6}{x-2}\)

a) Rút gọn BT A và B

b)Tìm x để A>1

c) Tìm x để A=B

GIÚP MIK VS AK. MIK ĐAG CẦN GẤP AK

TM Vô Danh
23 tháng 7 2018 lúc 8:49

a) ĐKXĐ của A là \(x\ne1\)

\(A=\dfrac{x^2-1}{x^2-2x+1}=\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2}=\dfrac{x+1}{x-1}\)

ĐKXĐ của B là \(x\ne2;x\ne-2\)

\(B=\left(\dfrac{x-1}{x+2}-\dfrac{x+1}{x-2}\right):\dfrac{6}{x-2}=\left(\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}\right).\dfrac{x-2}{6}=\left(\dfrac{x^2-3x+2-x^2-3x-2}{\left(x+2\right)\left(x-2\right)}\right).\dfrac{x-2}{6}=\dfrac{-6x}{\left(x+2\right)\left(x-2\right)}.\dfrac{x-2}{6}=\dfrac{-x}{x+2}\)b)

Với \(x\ne1\)

\(A>1\Leftrightarrow A-1>0\Leftrightarrow\dfrac{x+1}{x-1}>0\)

TH1 \(\left\{{}\begin{matrix}x+1>0\\x-1>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x>1\end{matrix}\right.\)\(\Leftrightarrow x>1\)

TH2 \(\left\{{}\begin{matrix}x+1< 0\\x-1< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x< -1\\x< 1\end{matrix}\right.\)\(\Leftrightarrow x< -1\)

c) Với \(x\ne1;x\ne2;x\ne-2\)

\(A=B\Leftrightarrow\dfrac{x+1}{x-1}=\dfrac{-x}{x+2}\)

\(\Leftrightarrow\dfrac{x+1}{x-1}+\dfrac{x}{x+2}=0\)

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}+\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}=0\)

\(\Leftrightarrow x^2+3x+2+x^2-x=0\)

\(\Leftrightarrow2x^2-2x+2=0\)

\(\Leftrightarrow2\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x^2-x+1=0\) \(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)

Với mọi x ta luôn có \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

=> ko có giá trị nào của x để A=B


Các câu hỏi tương tự
Tuấn Kiên Phạm
Xem chi tiết
Kanzaki Kori
Xem chi tiết
Soul Hopless
Xem chi tiết
s e a n.
Xem chi tiết
Minh Nhật
Xem chi tiết
Mun Tổng
Xem chi tiết
Đỗ Thanh Huyền
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Mai Nguyệt
Xem chi tiết