\(M=\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}+\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)
\(=\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}+\dfrac{a-1}{\sqrt{a}}\times\dfrac{\left(\sqrt{a}+1\right)^2+\left(\sqrt{a}-1\right)^2}{a-1}\)
\(=\dfrac{a+\sqrt{a}+1}{\sqrt{a}}-\dfrac{a-\sqrt{a}+1}{\sqrt{a}}+\dfrac{2a+2}{\sqrt{a}}\)
\(=\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\)
~ ~ ~
\(\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}=7\)
\(\Leftrightarrow2a+2\sqrt{a}+2=7\sqrt{a}\)
\(\Leftrightarrow2a-5\sqrt{a}+2=0\)
\(\Leftrightarrow\left(\sqrt{a}-2\right)\left(2\sqrt{a}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=4\\a=\dfrac{1}{4}\end{matrix}\right.\) (nhận)
~ ~ ~
\(\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}>6\)
\(\Leftrightarrow2a+2\sqrt{a}+2>6\sqrt{a}\)
\(\Leftrightarrow2a-4\sqrt{a}+2>0\)
\(\Leftrightarrow\left(\sqrt{a}-1\right)^2>0\)
\(\Leftrightarrow a>1\)