* Xét (DMN) và (ABD) có:
+ (DMN) và (ABD) có điểm chung D.
+ M ∈ (ABD).
=> Giao tuyến của hai mp là MD.
* Xét (DMN) và (BCD) có :
+ (DMN) và (BCD) có điểm chung D.
+ MN cắt BC tại O nên O thộc 2 mp trên.
=> Giao tuyến hai mp là DO
* Xét (DMN) và (ABD) có:
+ (DMN) và (ABD) có điểm chung D.
+ M ∈ (ABD).
=> Giao tuyến của hai mp là MD.
* Xét (DMN) và (BCD) có :
+ (DMN) và (BCD) có điểm chung D.
+ MN cắt BC tại O nên O thộc 2 mp trên.
=> Giao tuyến hai mp là DO
Cho 4 điểm A, B, C và D không đồng phẳng. Gọi I, K lần lượt là trung điểm của hai đoạn thẳng AD và BC
a) Tìm giao tuyến của hai mặt phẳng (IBC) và (KAD)
b) Gọi M và N là hai điểm lần lượt lấy trên hai đoạn thẳng AB và AC. Tìm giao tuyến của hai mặt phẳng (IBC) và (DMN)
Cho 4 điểm A, B, C và D không đồng phẳng. Gọi M, N lần lượt là trung điểm của AC và BC. Trên đoạn BD lấy điểm P sao cho BP = 2PD.
a) Tìm giao điểm của đường thẳng CD và mặt phẳng (MNP)
b) Tìm giao tuyến của hai mặt phẳng (MNP) và (ACD)
Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD, trên cạnh AD lấy điểm P không trùng với trung điểm của AD.
a) Gọi E là giao điểm của đường thẳng MP và đường thẳng BD. Tìm giao tuyến của hai mặt phẳng (PMN) và (BCD)
b) Tìm giao điểm của mặt phẳng (PMN) và BC
Cho tứ diện ABCD và điểm M thuộc miền trong của tam giác ACD. Gọi I và J tương ứng là hai điểm trên cạnh BC và BD sao cho IJ không song song với CD
a) Hãy xác định giao tuyến của hai mặt phẳng (IJM) và (ACD)
b) Lấy N là điểm thuộc miền trong của tam giác ABD sao cho JN cắt đoạn AB tại L. Tìm giao tuyến của hai mặt phẳng (MNJ) và (ABC)
Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi. Gọi M, N lần lượt là trung điểm của các đoạn thẳng SA, AC và P là điểm nằm trên cạnh AB sao choBP = 3AP.a) Tìm giao tuyến của hai mặt phẳng (MNP) và (SBC).b) Gọi E, F là hai điểm nằm trong hai tam giác SAD và SBC. Tìm giao điểm củađường thẳng EF với mặt phẳng (MNP).
cứu mình với mai thi rồi :((
Cho tứ diện ABCD. Trên cạnh AB lấy điểm I và lấy các điểm J, K lần lượt là điểm thuộc miền trong các tam giác BCD và ACD. Gọi L là giao điểm của JK với mặt phẳng (ABC)
a) Hãy xác định điểm L
b) Tìm giao tuyến của mặt phẳng (IJK) với các mặt của tứ diện ABCD
Cho hình chóp A.ABCD. Lấy M, N và P lần lượt là các điểm trên các đoạn SA, AB và BC sao cho chúng không trùng với trung điểm của các đoạn thẳng ấy. Tìm giao điểm (nếu có) của mặt phẳng (MNP) với các cạnh của hình chóp ?
cho hình bình hành (ABCD) nằm trên mặt phẳng (P) và 1 điểm S nằm ngoài mặt phẳng (P) . Gọi M là điểm nằm giữa S và A ; N là điểm nằm giữa S và B ; giao điểm của 2 đường thẳng AC và BD là O .
a) tìm giao điểm của mặt phẳng (CMN) với O đường thẳng SO .
b) xác định giao tuyến của 2 mặt phẳng (SAD) và (CMN) .
cho hình bình hành (ABCD) nằm trên mặt phẳng (P) và 1 điểm S nằm ngoài mặt phẳng (P) . Gọi M là điểm nằm giữa S và A ; N là điểm nằm giữa S và B ; giao điểm của 2 đường thẳng AC và BD là O .
a) tìm giao điểm của mặt phẳng (CMN) với O đường thẳng SO .
b) xác định giao tuyến của 2 mặt phẳng (SAD) và (CMN) .