Cho \(M=\left[\dfrac{\left(x-1\right)^2}{3x+\left(x+1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right]:\dfrac{2x}{x^3+x}\)
a, Rút gọn biểu thức M
b, Tìm giá trị của x để M đạt GTNN
A=\(\dfrac{4x^2+\left(2x+3\right)\left(x+1\right)-9}{9x^2-4}\)
a) Rút gọn A
b) Tìm các số nguyên x để A đạt giá trị nguyên
Tìm x ϵ Z để : a) A = \(\dfrac{x^2-1}{x+2}\) có giá trị nguyên.
b) B = \(\dfrac{\left(x+1\right)^2+\left(x-1\right)^2}{2x^2-1}\) có giá trị nguyên.
c) C = \(\dfrac{2x-3}{3x-2}\) có giá trị nguyên.
d) D = \(\dfrac{x-1}{x^2+1}\) có giá trị nguyên.
cho biểu thức:
A=(\(\dfrac{2+x}{2-x}\)-\(\dfrac{2-x}{2+x}\)-\(\dfrac{4}{x-2}\).\(\dfrac{x^2}{x+2}\)) : \(\dfrac{x-1}{2x-x^2}\)
a) Hãy tìm điều kiện của x để giá trị của biểu thức được xác định?
b) Rút gọn biểu thức?
cho biểu thức P=\(\left(\dfrac{3}{x+1}+\dfrac{x-9}{x^2-1}+\dfrac{2}{1-x}\right):\dfrac{x-3}{x^2-1}\)
a.với đkxđ của P:x\(\ne\pm1;\)x\(\ne\pm3\). hãy rút gọn biểu thức P
b.tính giá trị của biểu thức P biết x^2-9=0
c.tìm các giá trị nguyên của x để P nhận giá trị nguyên
\(A=\left(\dfrac{1}{x^2-1}+\dfrac{1}{x+1}\right):\left(\dfrac{1}{x-1}-\dfrac{1}{x}\right)\) với \(x\ne0;x\ne\pm1\)
a)Rút gọn A
b) Tính giá trị của b thức A với x thỏa mãn |x-1|=3
Rút gọn M và A sau đây :
M= \(\left(\dfrac{x}{x+3}+\dfrac{3-x}{x+3}.\dfrac{x^2+3x+9}{x^2-9}\right)\)
A= \(\left(\dfrac{3x}{1-3x}-\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{1-6x+9x^2}\)
Cho biểu thức :
A = \(\left(\dfrac{x+1}{x^2-1}+\dfrac{2}{x+1}-\dfrac{3}{x}\right):\dfrac{x+2}{x^2-1}+\dfrac{6x^2-3x}{x^3+2x^2}-2+x\)
a) Rút gọn biểu thức A
b) Tìm x để A có giá trị âm, giá trị dương.
3) cho B = \(\dfrac{3x^2-12}{\left(x+3\right)\left(x^2+4x+4\right)}\)
a) tìm đkxđ và rút gọn C
b) với giá trị nào của x khi B = 0
4) cho biểu thức :
C = \(\left(\dfrac{x+2}{3x}+\dfrac{2}{x+1}-3\right):\left(\dfrac{2-4x}{x+1}-\dfrac{3x-x^2+1}{3x}\right)\)
a) tìm đkxđ và rút gọn C
b) tính giá trị C khi x = 2006
c) Với giá trị nào của x thì C < 0
d) tìm x thuộc giá trị nguyên để \(\dfrac{1}{C}\) thuộc giá trị nguyên