\(A=\frac{x+5}{\sqrt{x}-3}\left(đkxđ:x\ne3\right)\\ B=\frac{\sqrt{x}-1}{\sqrt{x}+3}+\frac{7\sqrt{x}-3}{x-9}\\ =\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)+7\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ =\frac{x-4\sqrt{x}+3+7\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\\ =\frac{x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\\ =\frac{\sqrt{x}}{\sqrt{x}-3}\left(đkxđ:x\ne3;0\right)\\ Suyra:\\ \frac{A}{B}=\frac{x+5}{\sqrt{x}}=\frac{2\sqrt{5}\cdot\sqrt{x}+x-2\sqrt{5x}+5}{\sqrt{x}}\\ =2\sqrt{5}+\frac{\left(\sqrt{x}-\sqrt{5}\right)^2}{\sqrt{x}}\ge2\sqrt{5}\left(vì\left(\sqrt{x}-\sqrt{5}\right)^2\ge0\forall x\right).\\ Dấu"="\\ \Leftrightarrow x=5\\ Vy...\)