a ) Rút gọn biểu thức :
\(P=x\left(\dfrac{x+1}{x^2+x+1}+\dfrac{1}{1-x}+\dfrac{x^2+2}{x^3-1}\right)\)
\(=\dfrac{x^2-1-x^2-x-1+x^2+2}{x^3-1}\)
\(=\dfrac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x}{x^2+x+1}\) ( 1 )
b ) Tìm x để P = 7 .
Thay P = 7 vào biểu thức ( 1 ) ta có :
\(\dfrac{x}{x^2+x+1}=7\)
\(\Leftrightarrow x=7\left(x^2+x+1\right)\)
\(\Leftrightarrow\)\(7\left(x^2+1\right)=0\)
Vì \(x^2\ge0\) nên suy ra \(x^2+1\ge1\)
Vậy không có x thỏa mãn để P = 7 .