a) P = \(\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}}-\frac{\sqrt{x}-1}{x+\sqrt{x}}\right)\).
P = \(\frac{\sqrt{x}.\sqrt{x}-1}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\sqrt{x}\left(\sqrt{x}-1\right)}\)
P = \(\frac{x-1}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{x-1-x+\sqrt{x}}\)
P = \(\frac{x-1}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
P = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
P = \(\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
P = \(x-1\).
b) P = \(\frac{9}{2}\).
⇔ \(x-1=\frac{9}{2}\)
⇔ \(x=\frac{11}{2}\).
Vậy \(x=\frac{11}{2}\)thì P = \(\frac{9}{2}\).