M=(\(\dfrac{\sqrt{x}}{\sqrt{x}-x}-\dfrac{\sqrt{x}+2}{1-x}=\dfrac{\sqrt{x}}{\sqrt{x}\left(1-\sqrt{x}\right)}-\dfrac{\sqrt{x}+2}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\))
M = \(\left(\dfrac{\sqrt{x}\left(1+\sqrt{x}\right)}{\sqrt{x}\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\right)-\dfrac{\left(\sqrt{x}+2\right)\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\sqrt{x}}\)
M=\(\dfrac{\sqrt{x}\left(1+\sqrt{x}\right)-\left(\sqrt{x}+2\right)\sqrt{x}}{\sqrt{x}\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\)=\(\dfrac{\sqrt{x}+x-x-2\sqrt{x}}{\sqrt{x}\left(1-x\right)}\)
M=\(\dfrac{\sqrt{x}-2\sqrt{x}}{\sqrt{x}\left(1-x\right)}=\dfrac{-\sqrt{x}}{\sqrt{x}\left(1-x\right)}=\dfrac{-1}{1-x}\)
M= \(\dfrac{-1}{1-x}\) có giá trị nguyên khi 1-x là ước của -1
Các ước của -1 là :
1-x=1 suy ra x=0(loại)
1-x= -1 suy ra x=2