M=\(\dfrac{x}{2x-2}+\dfrac{x^2+1}{2-2x^2}\)
M=\(\dfrac{x}{2\left(x-2\right)}+\dfrac{x^2+1}{2\left(1-x^2\right)}\)
M=\(\dfrac{x}{2\left(x-1\right)}+\dfrac{x^2+1}{2\left(1-x\right)\left(1+x\right)}\)
M=\(\dfrac{x}{2\left(x-1\right)}-\dfrac{x^2+1}{2\left(x-1\right)\left(1+x\right)}\)
M=\(\dfrac{x\left(1+x\right)-x^2-1}{2\left(x-1\right)\left(1+x\right)}\)
M=\(\dfrac{x+x^2-x^2-1}{2\left(x-1\right)\left(1+x\right)}\)
M=\(\dfrac{x-1}{2\left(x-1\right)\left(1+x\right)}\)
M=\(\dfrac{1}{2\left(1+x\right)}\)
Để biểu thức M có nghĩa thì
\(2\left(x+1\right)\ne0\)
=>\(x+1\ne0\)
\(x\ne-1\)
M=\(\dfrac{1}{2\left(x+1\right)}\)
Mà M=\(\dfrac{1}{2}\)
=>\(\dfrac{1}{2\left(x+1\right)}=\dfrac{1}{2}\)
=>2=2(x+1)
2=2x+2
x=0
Vậy x=0