Cho biểu thức: \(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]\) \(:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\) \(\left(x>0,y>0\right)\)
a, Rút gọn A
b,Biết \(xy=16\) . Tìm các giá trị của xy để A có GTNN. Tìm GTNN đó.
Giải hệ:
\(\left\{{}\begin{matrix}x^2+y^2+xy=5\\27x^3+6y^2x=2+y^3+30x^2y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y^2+\frac{8xy}{x+y}=16\\\frac{x^2}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-\frac{y}{2}\end{matrix}\right.\), \(\left\{{}\begin{matrix}\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\\2\left(2x+\sqrt{y}\right)=\sqrt{2x+6}-y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2y-3x-1=3x\sqrt{y}\left(\sqrt{1-x}-1\right)^3\\\sqrt{8x^2-3xy+4y^2}+\sqrt{xy}=4y\end{matrix}\right.\)
Cho các số a,b,c là các số k âm sao cho tổng hai số bất kì đều dương.CMR \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}+\frac{16\sqrt{ab+bc+ac}}{a+b+c}\ge8\)
Cho biểu thức: P = (\(\frac{2}{\sqrt{xy}}\) + \(\frac{1}{x}\)+ \(\frac{1}{y}\)). \(\frac{\sqrt{xy}\left(x+y\right)-xy}{x\sqrt{x}+y\sqrt{y}}\) (với x > 0; y > 0)
1. Rút gọn biểu thức P
2. Biết xy = 16. Tìm giá trị nhỏ nhất của P
1, gpt
a,\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
b, \(\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8\)
c,\(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
2/ cho x,y,z thỏa mãn : \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\frac{1}{x+y+z}=1\)
tính giá trị biểu thức B=\(\left(x^{29}+y^{29}\right)\left(x^{11}+y^{11}\right)\left(x^{2013}+y^{2013}\right)\)
Rút Gọn Biểu Thức
1/ A = \(2x^3y\sqrt{\frac{y}{x^4}}+xy^2\sqrt{\frac{9}{y}}-x^2y^5\sqrt{\frac{4}{x^2y^7}}\) (x < 0, y > 0)
2/ B = \(\sqrt{a-4\sqrt{a}+4}-\sqrt{a+2\sqrt{a}+1}\) (a > 4)
Cho biểu thức \(\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}:\frac{1}{\sqrt{x}-\sqrt{y}}\)
a) Tìm đk để x, y để A có nghĩa
b) Rút gọn A
c) Tính giá trị của A khi \(x=\sqrt{x+2\sqrt{2}}\) và \(y=\sqrt{3-2\sqrt{2}}\)
Cho x,y thỏa mãn x>1, y<0 và \(\frac{\left(x+y\right)\left(x^3-y^3\right)\sqrt{4x-2\sqrt{4x-1}}}{\left(1-\sqrt{4x-1}\right)\left(x^2y^2+xy^3+y^4\right)}=-8\). Vậy \(\frac{x}{y}=\)
cho các số thực dương x,y,z thỏa mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\) chứng minh \(\sqrt{\frac{xy}{x+y+2z}}+\sqrt{\frac{yz}{y+z+2x}}+\sqrt{\frac{zx}{z+x+2y}}\le\frac{1}{2}\)
Cho x, y, z là ba số thực dương thỏa mãn \(xy+yz+xz\le3xyz\). Tìm GTLN của biểu thức :
\(P=\frac{1}{\sqrt{2x^2+xy+y^2}}+\frac{1}{\sqrt{2y^2+yz+z^2}}+\frac{1}{\sqrt{2z^2+zx+x^2}}\)