Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Kim Oanh

CHo biểu thức B =\(\dfrac{\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)}{\dfrac{\sqrt{x}}{x+\sqrt{x}}}\)(x>o)

a) Rút gọn B

b)Chứng tỏ B>0

c) Tìm GTNN của B

Byun Thị Bún
16 tháng 7 2018 lúc 15:58

a) \(B=\)\(\dfrac{\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}}{\dfrac{\sqrt{x}}{x+\sqrt{x}}}\) ĐKXĐ: x>0

=\(\dfrac{\dfrac{\sqrt{x}+1+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}}{\dfrac{\sqrt{x}}{x+\sqrt{x}}}\)

\(=\dfrac{x+\sqrt{x}+1}{x+\sqrt{x}}:\dfrac{\sqrt{x}}{x+\sqrt{x}}\)

=\(\dfrac{x+\sqrt{x}+1}{x+\sqrt{x}}\times\dfrac{x+\sqrt{x}}{\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

b)

Theo câu a ) ta có :

B=\(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

Xét : \(x+\sqrt{x}+1=x+2.\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

=\(\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) (với mọi x>0) (1)

Xét:

\(\sqrt{x}>0\) (2)

Từ (1) và (2) =>\(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}>0\) (ĐPCM)

c) B=\(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) ( theo câu a)

=\(\dfrac{x}{\sqrt{x}}+\dfrac{1}{\sqrt{x}}+1\)

=\(\sqrt{x}+\dfrac{1}{\sqrt{x}}+1\)

Áp dụng BĐT cô si cho \(\sqrt{x}\)\(\dfrac{1}{\sqrt{x}}\)

Ta có : \(\sqrt{x}+\dfrac{1}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\dfrac{1}{\sqrt{x}}}\)

=2

Vậy :\(\sqrt{x}+\dfrac{1}{\sqrt{x}}+1\ge2+1\)

Hay\(\sqrt{x}+\dfrac{1}{\sqrt{x}}+1\ge3\)

Min B= 3 Dấu "=" xảy ra khi x=1

CHÚC BẠN HỌC TỐThiuhiu


Các câu hỏi tương tự
Không Biết Chán
Xem chi tiết
Mai Huyền My
Xem chi tiết
Không Biết Chán
Xem chi tiết
Thục Trinh
Xem chi tiết
Nguyễn Mạnh Hùng
Xem chi tiết
Felix MC-Gamer
Xem chi tiết
Nấm Chanel
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết