\(\left|x\right|=2\Rightarrow x=\begin{cases}2\\-2\end{cases}\)
Mà \(x^4,x^2\ge0\Rightarrow A=2^4+2^2=\left(-2\right)^4+\left(-2\right)^2=20\)
Vậy A=20
\(\left|x\right|=2\Rightarrow x=\begin{cases}2\\-2\end{cases}\)
Mà \(x^4,x^2\ge0\Rightarrow A=2^4+2^2=\left(-2\right)^4+\left(-2\right)^2=20\)
Vậy A=20
a) Cho hai số thực a và b thỏa a-b=2. Tích a và b đạt Min bằng bao nhiêu
b) Có bao nhiêu giá trị nguyên của x thuộc [-2;5] thỏa mãn phương trình x2(x-1) \(\ge0\)
c) Bất pt \(\left|4x+3\right|-\left|x-1\right|< x\) có tập nghiệm S=(a;b). Tính giá trị biểu thức P=2a-4b
d) Có bao nhiêu giá trị nguyên của tham số m để bất phương trình \(x^2-2mx+2\left|x-m\right|+2>0\)
Cho hệ pt
\(\left\{{}\begin{matrix}x+my=9\\mx-3y=4\end{matrix}\right.\).
a) Chứng tỏ rằng hệ pt luôn luôn có nghiệm duy nhất vs mọi m
b) Với giá trị nào của m để hệ có nghiệm (x;y) thỏa mãn hệ thức
\(x-3y=\dfrac{28}{m^2+3}-3\)
Cho phương trình \(x^2-2mx+4m-6=0\) Tìm giá trị của tham số m để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn :
a) 0<x1<2<x2
b) 0<x1<x2<2
cho hai số thực x,y thỏa mãn điều kiện x-3\(\sqrt{x+1}=3\sqrt{y+2}-y\).hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức K=x+y
a) Tam thức \(f\left(x\right)=x^2+2\left(m-1\right)+m^2-3m+4\) không âm với mọi giá trị x
b) Có bao nhiêu giá trị nguyên của tham số m để mọi x thuộc R biểu thức \(f\left(x\right)=x^2+\left(m+2\right)x+8m+1\) luôn nhận giá trị dương
c) Tìm tất cả các giá trị m để biểu thức \(f\left(x\right)=x^2+\left(m+1\right)x+2m+7>0\forall x\in R\)
Cho 3 số thực x, y, z thỏa mãn \(x^3+8y^3+27z^3-18xyz=1\). Tìm giá trị nhỏ nhất của biểu thức: \(P=x^2+4y^2+9z^2\)
cho phương trình \(x^2-4mx+9\left(m-1\right)^2=0\) giả sử phương trình đã cho có hai nghiệm x1,x2 và biểu thức liên hệ giữa các nghiệm độc lập đối với tham số m có dạng là \(\left(x1+x2+a\right)^2=bx1x2\) .giá trị b/a là
Cho phương trình: 2x2 + (2m-1)x +m-1=0
a.Tìm m để phương trình có 2 nghiệm x1, x2 thoả mãn 3x1 -4x2 =11
b.Tìm đẳng thức liên hệ giữa x1, x2 không phụ thuộc vào m
c.Với giá trị nào của m thì x1, x2 cùng dương
Cho x, y, z là ba số dương thỏa mãn \(x^2+y^2+z^2=1\)
Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+2xyz\)