Cho x, y, z là các số thực thuộc (0;1) thỏa mãn điều kiện \(\left(x^3+y^3\right)\left(x+y\right)=xy\left(1-x\right)\left(1-y\right)\)
Tìm giá trị lớn nhất của biểu thức \(P=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+3xy-\left(x^2+y^2\right)\)
Cho x, y, z là ba số dương thỏa mãn \(x^2+y^2+z^2=1\)
Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+2xyz\)
Gọi \(\left(x_0;y_0\right)\) là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}\frac{3}{2x-y}+\frac{8}{x+2y}=3\\\frac{2x+4y+2}{x+2y}-\frac{5}{x-2y}=\frac{5}{6}\end{matrix}\right.\)
Tính giá trị của biểu thức P=\(3x_0-2y_0\)
Câu 11 : Cho x,y là 2 số thực dương thỏa mãn x+y = 5 . GTNN của biểu thức P = \(\frac{16}{x}+\frac{1}{4y}\) là phân số dương tối giản \(\frac{a}{b}\) . Tính giá trị S = a+b ?
giải hệ phương trình
1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\)
3 , \(\left\{{}\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{matrix}\right.\)
4 , \(\left\{{}\begin{matrix}2xy-3\frac{x}{y}=15\\xy+\frac{x}{y}=15\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}x+y+3xy=5\\x^2+y^2=1\end{matrix}\right.\)
6 , \(\left\{{}\begin{matrix}x+y+xy=11\\x^2+y^2+3\left(x+y\right)=28\end{matrix}\right.\)
7, \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)
8, \(\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)
9 , \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)
giải hệ phương trình
\(\left\{{}\begin{matrix}x^2+\frac{1}{x}=y^2+\frac{1}{2y}\\2x^2-\frac{1}{x}=\frac{1}{2y}-2y^2\end{matrix}\right.\) (x , y thuộc R )
Cho biểu thức
P= \(\frac{\sqrt{x}\left(1-x\right)^2}{1+\sqrt{x}}\): [(\(\left[\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}\right)+\sqrt{x}.\left(\frac{1+x\sqrt{x}}{1+\sqrt{x}}\right)-\sqrt{x}\right]\)
a) RG P
b) Tìm các giá trị lớn nhất của x để P < 1
c) Tìm x ϵ Z để P ϵ Z
\(\begin{cases}\sqrt{9y-2}+\sqrt[3]{7x+2y+2}=2y+3\\x+3y+1=y^2-\frac{1}{y}+\frac{3x+4}{\sqrt{x+1}}\end{cases}\)
Mn giúp e với ạ lm đc con nào thì làm ạ e cần gấp :((
\(1.\begin{cases}x^4+4x^3+y^2=8\\-4x^3+2x^2+xy\left(y-2\right)=-4\end{cases}\) 5.\(\begin{cases}xy^3+y^3+xy+y=1\\4x^2y^3-4y^3-8xy-17+8=0\end{cases}\)
\(2.\begin{cases}2x^2y^2+x^2+2x=2\\2x^2y-x^2y^2+2xy=1\end{cases}\) 6.\(\begin{cases}2x+\frac{5y}{x^2+y^2}=4\\2y+\frac{5x}{x^2+y^2}=5\end{cases}\)3.\(\begin{cases}x^2+4y=3\\\left(2y^2+1\right)x=y^4+y^2-4y+1\end{cases}\)
4.\(\begin{cases}x^3+y^3-x^2y-xy^2-xy=0\\y^2-3x^2+3xy+3x-y-1=0\end{cases}\)