a,ĐK:\(a>0;b>0;a\ne b\)
b,\(A=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\\ A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\\ A=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=0\)
Vậy khi A có nghĩa thì A không phụ thuộc vào a
a) Biểu thức A có nghĩa khi và chỉ khi :
\(\left\{{}\begin{matrix}a\ge0\\b\ge0\\\sqrt{a}-\sqrt{b}\ne0\\\sqrt{ab}\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a\ge0\\b\ge0\\a\ne b\\ab\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a\ge0\\b\ge0\\a\ne b\end{matrix}\right.\)
Vậy \(a\ge0,b\ge0\) và \(a\ne b\) thì A có nghĩa.