a) \(A=\left(-m+n-p\right)-\left(-m-n-p\right)\)
\(=-m+n-p+m+n+p\)
\(=2n\)
b) Khi \(m=1,n=-1,p=-2\) có :
\(A=2n=2\cdot\left(-1\right)=-2\)
Vậy \(A=-2\) khi \(m=1,n=-1,p=-2\)
Giải:
a) \(A=\left(-m+n-p\right)-\left(-m-n-p\right)\)
\(A=-m+n-p+m+n+p\)
\(A=\left(-m+m\right)+\left(n+n\right)+\left(-p+p\right)\)
\(A=0+2n+0\)
\(A=2n\)
b) Ta thay: m=1; n=-1; p=-2
Ta có:
\(A=\left(-m+n-p\right)-\left(-m-n-p\right)\)
\(A=\left(-1+-1--2\right)-\left(-1--1--2\right)\)
\(A=\left(-1-1+2\right)-\left(-1+1+2\right)\)
\(A=-1-1+2+1-1-2\)
\(A=\left(-1+1\right)+\left(-1-1\right)+\left(2-2\right)\)
\(A=0+-2.1+0\)
\(A=-2\)