\(A=\left(-2a+3b-4c\right)-\left(-2a-3b-4c\right)\)
\(=-2a+3b-4c+2a+3b+4c\)
\(=6b\)
b) Khi \(a=2012,b=-1,c=-2013\) ta có :
\(A=6b=6\cdot\left(-1\right)=-6\)
Vậy \(A=-6\) khi \(a=2012,b=-1,c=-2013\)
Giải:
a) \(A=\left(-2a+3b-4c\right)-\left(-2a-3b-4c\right)\)
\(A=-2a+3b-4c+2a+3b+4c\)
\(A=\left(-2a+2a\right)+\left(3b+3b\right)+\left(-4c+4c\right)\)
\(A=0+2.3b+0\)
\(A=6b\)
b) Ta thay: \(a=2012;b=-1;c=-2013\)
Ta có:
\(A=\left(-2a+3b-4c\right)-\left(-2a-3b-4c\right)\)
\(A=\left(-2.2012+-3.1--4.2013\right)-\left(-2.2012--3.1--4.2013\right)\)
\(A=\left(-2.2012-3.1+4.2013\right)-\left(-2.2012+3.1+4.2013\right)\)
\(A=-2.2012-3.1+4.2013+2.2012-3.1-4.2013\)
\(A=\left(-2.2012+2.2012\right)+\left(-3.1-3.1\right)+\left(4.2013-4.2013\right)\)
\(A=0+2.-3.1+0\)
\(A=-6\)