Theo bài ra, ta có:
+) A = \(\dfrac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\)
= \(\dfrac{1+5+5^2+...+5^8}{1+5+5^2+...+5^8}\)+ \(\dfrac{5^9}{1+5+5^2+...+5^8}\)
= 1 + \(\dfrac{1}{\dfrac{1+5+5^2+...+5^8}{5^9}}\)
+) B = \(\dfrac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)
= \(\dfrac{1+3+3^2+...+3^8}{1+3+3^2+...+3^8}\)+ \(\dfrac{3^9}{1+3+3^2+...+3^8}\)
= 1 + \(\dfrac{1}{\dfrac{1+3+3^2+...+3^8}{3^9}}\)
Nhận xét:
+) \(\dfrac{1+5+5^2+...+5^8}{5^9}\) = \(\dfrac{1}{5^9}\) + \(\dfrac{1}{5^8}\) + ... + \(\dfrac{1}{5^{ }}\)
+) \(\dfrac{1+3+3^2+...+3^8}{3^9}\) = \(\dfrac{1}{3^9}\) + \(\dfrac{1}{3^8}\) + ... + \(\dfrac{1}{3}\)
Có: \(\dfrac{1}{5^9}\) < \(\dfrac{1}{3^9}\) ; \(\dfrac{1}{5^8}\) < \(\dfrac{1}{3^8}\) ; ... ; \(\dfrac{1}{5^{ }}\) < \(\dfrac{1}{3}\)
⇒ \(\dfrac{1+5+5^2+...+5^8}{5^9}\) < \(\dfrac{1+3+3^2+...+3^8}{3^9}\)
⇒ \(\dfrac{1}{\dfrac{1+5+5^2+...+5^8}{5^9}}\) > \(\dfrac{1}{\dfrac{1+3+3^2+...+3^8}{3^9}}\)
⇒ A > B
Vậy A > B.